Hyperk\"ahler Manifolds and Seiberg--Witten Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 263-276

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical properties of the so-called gauged nonlinear $\sigma$-model in dimension 4 are studied. An important element of the construction is a nonlinear generalization of the Dirac operator on a 4-manifold such that the fiber of the spinor vector bundle, a copy of quaternions $\mathbb H$, is replaced by a hyperkähler manifold endowed with a hyperkähler Lie group action and an additional symmetry. This Dirac operator is used to define Seiberg–Witten moduli spaces. An explicit Weitzenböck formula for such a Dirac operator is derived and applied to describe some properties of the Seiberg–Witten moduli spaces.
@article{TM_2004_246_a17,
     author = {V. Ya. Pidstrigach},
     title = {Hyperk\"ahler {Manifolds} and {Seiberg--Witten} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {263--276},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a17/}
}
TY  - JOUR
AU  - V. Ya. Pidstrigach
TI  - Hyperk\"ahler Manifolds and Seiberg--Witten Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 263
EP  - 276
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a17/
LA  - ru
ID  - TM_2004_246_a17
ER  - 
%0 Journal Article
%A V. Ya. Pidstrigach
%T Hyperk\"ahler Manifolds and Seiberg--Witten Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 263-276
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a17/
%G ru
%F TM_2004_246_a17
V. Ya. Pidstrigach. Hyperk\"ahler Manifolds and Seiberg--Witten Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 263-276. http://geodesic.mathdoc.fr/item/TM_2004_246_a17/