On Correspondences of a~K3 Surface with Itself.~I
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 217-239

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a K3 surface with a polarization $H$ of degree $H^2=2rs$, $r,s\ge 1$. Assume that $H\cdot N(X)=\mathbb Z$ for the Picard lattice $N(X)$. The moduli space of sheaves over $X$ with the isotropic Mukai vector $(r,H,s)$ is again a K3 surface $Y$. We prove that $Y\cong X$ if there exists $h_1\in N(X)$ with $h_1^2=f(r,s)$, $H\cdot h_1\equiv 0\mathrm {\,mod}\ g(r,s)$, and $h_1$ satisfies some condition of primitivity. These conditions are necessary if $X$ is general with $\mathop {\mathrm{rk}}N(X)=2$. The existence of such kind of a riterion is surprising, and it also gives some geometric interpretation of elements in $N(X)$ with negative square. We describe all irreducible 18-dimensional components of the moduli space of pairs $(X,H)$ with $Y\cong X$. We prove that their number is always infinite. Earlier, similar results have been known only for $r=s$.
@article{TM_2004_246_a15,
     author = {V. V. Nikulin},
     title = {On {Correspondences} of {a~K3} {Surface} with {Itself.~I}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {217--239},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a15/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - On Correspondences of a~K3 Surface with Itself.~I
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 217
EP  - 239
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a15/
LA  - ru
ID  - TM_2004_246_a15
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T On Correspondences of a~K3 Surface with Itself.~I
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 217-239
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a15/
%G ru
%F TM_2004_246_a15
V. V. Nikulin. On Correspondences of a~K3 Surface with Itself.~I. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 217-239. http://geodesic.mathdoc.fr/item/TM_2004_246_a15/