$\mathbb Q$-Complements on Log Surfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 181-182
Voir la notice du chapitre de livre
Log surfaces without $\mathbb Q$-complement are classified.
@article{TM_2004_246_a12,
author = {S. A. Kudryavtsev and I. Yu. Fedorov},
title = {$\mathbb Q${-Complements} on {Log} {Surfaces}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {181--182},
year = {2004},
volume = {246},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a12/}
}
S. A. Kudryavtsev; I. Yu. Fedorov. $\mathbb Q$-Complements on Log Surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 181-182. http://geodesic.mathdoc.fr/item/TM_2004_246_a12/
[1] J. Kollar (ed.), Flips and abundance for algebraic threefolds, Astérisque, 211, Soc. Math. France, Paris, 1992 | MR
[2] Kudryavtsev S. A., Complements on log surfaces, , 2003 arXiv: /math.AG/0304437 | MR
[3] Prokhorov Yu. G., Lectures on complements on log surfaces, MSJ Memoirs, 10, Math. Soc. Japan, Tokyo, 2001 | MR
[4] Hartshorne R., Algebraic geometry, Springer, New York, 1977 | MR | Zbl
[5] Shokurov V. V., “Complements on surfaces”, J. Math. Sci., 102:2 (2000), 3876–3932 | DOI | MR | Zbl