$p$-Adic and Adelic Quantum Mechanics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 72-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

$p$-Adic mathematical physics emerged as a result of efforts to find a non-Archimedean approach to the space–time and string dynamics at the Planck scale. One of its main achievements is a successful formulation and development of $p$-adic and adelic quantum mechanics, which have complex-valued wave functions of $p$-adic and adelic arguments, respectively. Various aspects of these quantum mechanics are reviewed here. In particular, the corresponding Feynman's path integrals, some minisuperspace cosmological models, and relevant approaches to string theory are presented. As a result of an adelic approach, $p$-adic effects exhibit a space–time and some other discreteness, which depend on the adelic quantum state of the physical system under consideration. In addition to the review, this article also contains some new results.
@article{TM_2004_245_a7,
     author = {B. G. Dragovich},
     title = {$p${-Adic} and {Adelic} {Quantum} {Mechanics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {72--85},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a7/}
}
TY  - JOUR
AU  - B. G. Dragovich
TI  - $p$-Adic and Adelic Quantum Mechanics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 72
EP  - 85
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a7/
LA  - en
ID  - TM_2004_245_a7
ER  - 
%0 Journal Article
%A B. G. Dragovich
%T $p$-Adic and Adelic Quantum Mechanics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 72-85
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a7/
%G en
%F TM_2004_245_a7
B. G. Dragovich. $p$-Adic and Adelic Quantum Mechanics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 72-85. http://geodesic.mathdoc.fr/item/TM_2004_245_a7/

[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[2] Gouvea F. Q., $p$-Adic numbers: An introduction, Springer, Berlin, 1993, Universitext | MR | Zbl

[3] Schikhof W. H., Ultrametric calculus: An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[4] Mahler K., $p$-Adic numbers and their functions, Cambridge Tracts Math., 76, Cambridge Univ. Press, Cambridge, 1980 | MR

[5] Koblitz N., $p$-Adic numbers, $p$-adic analysis and zeta functions, LMS Lect. Notes Ser., 46, Cambridge Univ. Press, Cambridge, 1980 | MR | Zbl

[6] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i obobschennye funktsii, Nauka, M., 1966

[7] Weil A., Adeles and algebraic groups, Progr. Math., 23, Birkhäuser, Basel etc., 1982 | MR | Zbl

[8] Platonov V. P., Rapinchuk A. S., Algebraicheskie gruppy i teoriya chisel, Nauka, M., 1991 | MR

[9] Volovich I. V., Number theory as the ultimate physical theory, Preprint CERN-TH. 4781/87, Geneva, July 1987

[10] Dragovich B., “Adelic model of harmonic oscillator”, Teor. i mat. fizika, 101:3 (1994), 349–359 | MR | Zbl

[11] Dragovich B., “Adelic harmonic oscillator”, Intern. J. Mod. Phys. A., 10 (1995), 2349–2365 | DOI | MR | Zbl

[12] Weyl H., The theory of groups and quantum mechanics, Dover Publ., New York, 1931

[13] Feynman R. P., Hibbs A. R., Quantum mechanics and path integrals, McGraw-Hill, New York, 1965 | Zbl

[14] Vladimirov V. S., Volovich I. V., “$p$-Adicheskaya kvantovaya mekhanika”, DAN SSSR, 302:2 (1988), 320–323 | MR | Zbl

[15] Khrennikov A. Yu., $p$-Adic valued distributions in mathematical physics, Kluwer, Dordrecht, 1994 | MR | Zbl

[16] Khrennikov A. Yu., Non-Archimedean analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl

[17] Vladimirov V. S., Volovich I. V., “$p$-Adic quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl

[18] Ruelle Ph., Thiran E., Verstegen D., Weyers J., “Quantum mechanics on $p$-adic fields”, J. Math. Phys., 30 (1989), 2854–2874 | DOI | MR | Zbl

[19] Meurice Y., “Quantum mechanics with $p$-adic numbers”, Intern. J. Mod. Phys. A., 4 (1989), 5133–5147 | DOI | MR | Zbl

[20] Dragovich B., “On generalized functions in adelic quantum mechanics”, Integral Transforms and Spec. Funct., 6 (1998), 197–203 | DOI | MR | Zbl

[21] Radyno E. M., Radyno Ya. V., “Raspredeleniya i mnemofunktsii na adelyakh. Preobrazovanie Fure”, Tr. MIAN, 245, 2004, 228–240 | MR | Zbl

[22] Djordjević G. S., Dragovich B., Nešić Lj., “$p$-Adic and adelic free relativistic particle”, Mod. Phys. Lett. A., 14 (1999), 317–325 | DOI | MR

[23] Zelenov E. I., “$p$-Adic path integrals”, J. Math. Phys., 32 (1991), 147–152 | DOI | MR | Zbl

[24] Djordjević G. S., Dragovich B., “On $p$-adic functional integration”, Proc. II Math. Conf. (Priština, Yugoslavia, 1997), Univ. Priština, Priština, 1997, 221–228 | MR | Zbl

[25] Djordjević G. S., Dragovich B., “$p$-Adic path integrals for quadratic actions”, Mod. Phys. Lett. A., 12 (1997), 1455–1463 | DOI | MR | Zbl

[26] Djordjević G. S., Dragovich B., Nešić Lj., “Adelic path integrals for quadratic Lagrangians”, Infin. Dimens. Anal. Quant. Probab. Relat. Top., 6 (2003), 179–195 | DOI | MR | Zbl

[27] Dzhordzhevich G. S., Dragovich B., “$p$-Adicheskii i adelnyi garmonicheskie ostsillyatory s zavisyaschei ot vremeni chastotoi”, Teor. i mat. fizika, 124:2 (2000), 239–248 | MR

[28] Parisi G., “On $p$-adic functional integrals”, Mod. Phys. Lett. A., 3 (1988), 639–643 | DOI | MR

[29] Meurice Y., “A path integral formulation of $p$-adic quantum mechanics”, Phys. Lett. B., 245 (1990), 99–104 | DOI | MR

[30] Blair A. D., “Adelic path space integrals”, Rev. Math. Phys., 7 (1995), 21–49 | DOI | MR | Zbl

[31] Hartle J. B., Hawking S. W., “Wave function of the Universe”, Phys. Rev., 28 (1983), 2960–2075 | MR

[32] Aref'eva I. Ya., Dragovich B., Frampton P. H., Volovich I. V., “The wave function of the Universe and $p$-adic gravity”, Intern. J. Mod. Phys. A., 6 (1991), 4341–4358 | DOI | MR

[33] Dragovich B., “Adelic wave function of the Universe”, Proc. Third A. Friedmann Intern. Seminar on Gravitation and Cosmology, Friedmann Lab. Publ., St. Petersburg, 1995, 311–321

[34] Dragovich B., Nešić Lj., “$p$-Adic and adelic generalization of quantum cosmology”, Gravitation and Cosmology, 5 (1999), 222–228 | MR | Zbl

[35] Djordjević G. S., Dragovich B., Nešić Lj., Volovich I. V., “$p$-Adic and adelic minisuperspace quantum cosmology”, Intern. J. Mod. Phys. A., 17 (2002), 1413–1433 | DOI | MR | Zbl

[36] Volovich I. V., “$p$-Adic string”, Class. and Quant. Grav., 4 (1987), L83–L87 | DOI | MR

[37] Freund P. G. O., Olson M., “Non-Archimedean strings”, Phys. Lett. B., 199 (1987), 186–190 | DOI | MR

[38] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B., 199 (1987), 191–194 | DOI | MR

[39] Brekke L., Freund P. G. O., “$p$-Adic numbers in physics”, Phys. Rept., 233 (1993), 1–66 | DOI | MR

[40] Ghoshal D., Sen A., “Tachyon condensation and brane descent relations in $p$-adic string theory”, Nucl. Phys. B., 584 (2000), 300–312 | DOI | MR | Zbl

[41] Vladimirov V. S., Volovich Ya. I., On the nonlinear dynamical equation in the $p$-adic string theory, , 2003 arXiv: /math-ph/0306018

[42] Dragovich B., On adelic strings, , 2000 arXiv: /hep-th/0005200

[43] Aref'eva I. Ya., Dragovich B., Volovich I. V., “On the adelic string amplitudes”, Phys. Lett. B., 209 (1988), 445–450 | DOI | MR

[44] Dragovich B., “$p$-Adic and adelic strings”, Quantization, Gauge Theory and Strings, Proc. Intern. Conf. dedicated to the memory of Prof. E. Fradkin, Sci. World/Lebedev Phys. Inst., Moscow, 2001, 108–114 | MR | Zbl

[45] Dragovich B., Volovich I. V., “$p$-Adic strings and noncommutativity”, Noncommutative structures in mathematics and physics, NATO Sci. Ser. 2: Math., Phys., Chem., 22, Kluwer, Dordrecht, 2001, 391–399 | MR

[46] Dragovich B., Sazdović B., “Real, $p$-adic and adelic noncommutative scalar solitons”, Proceedings of the summer school in modern mathematical physics, Sveske Fiz. Nauka, Ser. A, Conf. 3 (Sokobanja, Yugoslavia, August 13–25, 2001), eds. Dragovich, B. (ed.) et al., Institute of Physics, Belgrade, 283–296 | MR | Zbl

[47] Dragovich B., “On $p$-adic and adelic generalization of quantum field theory”, Nucl. Phys. B (Proc. Suppl.), 102/103 (2001), 150–155 | DOI | MR | Zbl