Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_245_a6, author = {D. M. Belov}, title = {On {a~String} {Product} in {Witten's} {String} {Field} {Theory}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {65--71}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a6/} }
D. M. Belov. On a~String Product in Witten's String Field Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 65-71. http://geodesic.mathdoc.fr/item/TM_2004_245_a6/
[1] Witten E., “Noncommutative geometry and string field theory”, Nucl. Phys. B., 268 (1986), 253–294 | DOI | MR
[2] Sen A., “Stable non-BPS bound states of BPS $D$-branes”, J. High Energy Phys., 1998, no. 8, Paper 10 | MR
[3] Sen A., “$\mathrm{SO}(32)$ spinors of type-I and other solitons on brane-antibrane pair”, J. High Energy Phys., 1998, no. 9, Paper 23 | MR
[4] Aref'eva I. Ya., Belov D. M., Giryavets A. A., Koshelev A. S., Medvedev P. B., Noncommutative field theories and (super)string field theories, , 2001 arXiv: /hep-th/0111208 | MR
[5] Sen A., “Rolling tachyon”, J. High Energy Phys., 2002, no. 4, 48, 18 | DOI | MR | Zbl
[6] Aref'eva I. Ya., Koshelev A. S., Joukovskaya L. V., “Time evolution in superstring field theory on non-BPS brane. I: Rolling tachyon and energy-momentum conservation”, J. High Energy Phys., 2003, no. 9, 012, 15 | DOI | MR
[7] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR
[8] Frampton P. H., Okada Y., “Effective scalar field theory of $p$-adic string”, Phys. Rev. D., 37 (1988), 3077–3079 | DOI | MR
[9] Brekke L., Freund P. G. O., Olson M., Witten E., “Non-archimedean string dynamics”, Nucl. Phys. B., 302 (1988), 365–402 | DOI | MR
[10] Gross D., Jevicki A., “Operator formulation of interacting string field theory, (I), (II), (III)”, Nucl. Phys. B., 283 (1987), 1–49 ; ibid 287, 225–250 ; ibid 293, 29–82 | DOI | MR | DOI | DOI
[11] Cremmer E., Schwimmer A., Thorn C. B., “The vertex function in Witten's formulation of string field theory”, Phys. Lett. B., 179 (1986), 57–65 | DOI | MR
[12] Samuel S., “The physical and ghost vertices in Witten's string field theory”, Phys. Lett. B., 181 (1986), 255–262 | DOI | MR
[13] Rastelli L., Sen A., Zwiebach B., Star algebra spectroscopy, , 2001 arXiv: /hep-th/0111281 | MR
[14] Bargmann V., “Irreducible unitary representations of the Lorentz group”, Ann. Math., 48 (1947), 568–640 | DOI | MR | Zbl
[15] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, Fizmatgiz, M., 1962, vyp. 5
[16] Rühl W., The Lorentz group and harmonic analysis, Ch. 5, W. A. Benjamin, New York, 1970 | MR | Zbl
[17] LeClair A., Peskin M., Preitschopf C., “String field theory on the conformal plane, (I), (II)”, Nucl. Phys. B., 317 (1989), 411–463 | DOI | MR
[18] Aref'eva I. Ya., Giryavets A., “Open superstring star as a continuous Moyal product”, J. High Energy Phys., 2002, no. 12, 074, 18 pp | MR
[19] Okuyama K., “Ghost kinetic operator of vacuum string field theory”, J. High Energy Phys, 2002, no. 1, 27, 17 pp | MR
[20] Green M., Schwartz J., Witten E., Superstring theory, Cambridge Univ. Press, Cambridge, 1987 | MR
[21] Polchinski J., String theory, Cambridge Univ. Press, Cambridge, 1998
[22] Belov D. M., Lovelace C., “Witten's vertex made simple”, Phys. Rev. D., 68:6 (2003), 066003, 19 pp | DOI | MR | Zbl
[23] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1985
[24] Arefeva I. Ya., “Skatyvayuschiesya resheniya polevykh uravnenii na neekstremalnykh branakh i v $p$-adicheskikh strunakh”, Tr. MIAN, 245, 2004, 47–54 | MR