Some Properties of Dynamical Equations in $p$-Adic String and SFT Models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 296-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlinear pseudodifferential equations with an infinite number of derivatives. These equations form a new class of equations in mathematical physics, which first appeared in $p$-adic string theory. The investigation of these equations is of much interest for mathematical physics and its applications, in particular, in string field theory and cosmology. In this paper, we study the existence and the properties of spatially homogeneous solutions of these equations.
@article{TM_2004_245_a30,
     author = {Ya. I. Volovich},
     title = {Some {Properties} of {Dynamical} {Equations} in $p${-Adic} {String} and {SFT} {Models}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {296--303},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a30/}
}
TY  - JOUR
AU  - Ya. I. Volovich
TI  - Some Properties of Dynamical Equations in $p$-Adic String and SFT Models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 296
EP  - 303
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a30/
LA  - ru
ID  - TM_2004_245_a30
ER  - 
%0 Journal Article
%A Ya. I. Volovich
%T Some Properties of Dynamical Equations in $p$-Adic String and SFT Models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 296-303
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a30/
%G ru
%F TM_2004_245_a30
Ya. I. Volovich. Some Properties of Dynamical Equations in $p$-Adic String and SFT Models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 296-303. http://geodesic.mathdoc.fr/item/TM_2004_245_a30/

[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[2] Khrennikov A., $p$-Adic valued distributions in mathematical physics, Kluwer, Dordrecht, 1994 | MR | Zbl

[3] Brekke L., Freund P. G. O., “$p$-Adic numbers in physics”, Phys. Rept., 233:1 (1993), 1–66 | DOI | MR

[4] Sen A., “Rolling tachyon”, J. High Energy Phys., 2002, no. 4, Paper 048 | MR

[5] Brekke L., Freund P. G. O., Olson M., Witten E., “Non-archimedean string dynamics”, Nucl. Phys. B., 302 (1988), 365–402 | DOI | MR

[6] Frampton P. H., Okada Y., “Effective scalar field theory of $p$-adic string”, Phys. Rev. D., 37 (1988), 3077–3079 | DOI | MR

[7] Moeller N., Zwiebach B., “Dynamics with infinitely many time derivatives and rolling tachyons”, J. High Energy Phys., 2002, no. 10, Paper 034 | MR

[8] Aref'eva I. Ya., Koshelev A. S., Joukovskaya L. V., “Time evolution in superstring field theory on non-BPS brane. I: Rolling tachyon and energy-momentum conservation”, J. High Energy Phys., 2003, no. 9, Paper 012 | MR

[9] Aref'eva I. Ya., “Rolling tachyon in NS SFT”, Fortschr. Phys., 51 (2003), 652–657 | DOI | MR

[10] Aref'eva I. Ya., Joukovskaya L. V., “Rolling tachyon on non-BPS brane”, Lectures at the Intern. School on Math. Phys., Kaopovnik, Serbia, 2002

[11] Volovich Ya. I., “Numerical study of nonlinear equations with infinite number of derivatives”, J. Phys. A: Math. and Gen., 36 (2003), 8685–8701 ; arXiv: /math-ph/0301028 | DOI | MR | Zbl

[12] Vladimirov V. S., Volovich Ya. I., “O nelineinom uravnenii dinamiki v teorii $p$-adicheskoi struny”, Teor. i mat. fizika, 138:3 (2004), 355–368 ; arXiv: /math-ph/0306018 | MR | Zbl

[13] Moeller N., Schnabl M., Tachyon condensation in open-closed $p$-adic string theory, , 2003 arXiv: /hep-th/0304213 | MR

[14] Sen A., Open and closed strings from unstable D-branes, , 2003 arXiv: /hep-th/0305011 | MR

[15] Ohmori K., Toward open–closed string theoretical description of rolling tachyon, , 2003 arXiv: /hep-th/0306096

[16] Joukovskaya L., Volovich Ya., Energy flow from open to closed strings in a toy model of rolling tachyon, , 2003 arXiv: /math-ph/0308034

[17] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[18] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Obobschennye funktsii, Fizmatgiz, M., 1958, vyp. 2 | MR

[19] Grin M., Shvarts Dzh., Vitten E., Teoriya superstrun, Mir, M., 1990