Perturbed Dynamical Systems in $\mathfrak p$-Adic Fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 264-272

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a $\mathfrak p$-adic field, and let $\mathcal D$ be the class of all discrete dynamical systems defined by polynomials of the kind $h(x)=x+g(x)$, where $g(x)\in k[x]$ is irreducible. Using Krasner's lemma as a tool, we investigate the stability of this class with respect to perturbations of the kind $h_r(x)=h(x)+r(x)$, where $h(x)\in \mathcal D$ and $r(x)\in k[x]$.
@article{TM_2004_245_a26,
     author = {P.-A. Svensson},
     title = {Perturbed {Dynamical} {Systems} in $\mathfrak p${-Adic} {Fields}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {264--272},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a26/}
}
TY  - JOUR
AU  - P.-A. Svensson
TI  - Perturbed Dynamical Systems in $\mathfrak p$-Adic Fields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 264
EP  - 272
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a26/
LA  - en
ID  - TM_2004_245_a26
ER  - 
%0 Journal Article
%A P.-A. Svensson
%T Perturbed Dynamical Systems in $\mathfrak p$-Adic Fields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 264-272
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a26/
%G en
%F TM_2004_245_a26
P.-A. Svensson. Perturbed Dynamical Systems in $\mathfrak p$-Adic Fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 264-272. http://geodesic.mathdoc.fr/item/TM_2004_245_a26/