Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_245_a25, author = {G. B. Shabat}, title = {$p${-Adic} {Entropies} of {Logistic} {Maps}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {257--263}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a25/} }
G. B. Shabat. $p$-Adic Entropies of Logistic Maps. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 257-263. http://geodesic.mathdoc.fr/item/TM_2004_245_a25/
[1] Adler R. L., Konheim A. G., McAndrew M. H., “Topological entropy”, Trans. Amer. Math. Soc., 114:2 (1965), 309–319 | DOI | MR | Zbl
[2] Dremov V. A., “Ob odnom $p$-adicheskom mnozhestve Zhyulia”, UMN, 58:6 (2003), 151–152 | MR | Zbl
[3] Nevins M., Rogers Th. D., Quadratic maps as dynamical systems on the $p$-adic numbers, , 2000 http://citeseer.nj.nec.com/451088.html
[4] Thiran E., Verstegen D., Weyers J., “$p$-Adic dynamics”, J. Stat. Phys., 54:3/4 (1989), 893–913 | DOI | MR | Zbl