Construction of Interaction Measures on the Space of Distributions over the Field of $p$-Adic Numbers
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 146-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

We overview the construction of non-Gaussian measures on the space $\mathcal D'(\mathbb Q_p^n)$, $n\le 4$, of Bruhat–Schwartz distributions over the field of $p$-adic numbers, corresponding to finite volume polynomial interactions in a $p$-adic analogue of the Euclidean quantum field theory. Our choice of the free measure is the Gaussian measure corresponding to an elliptic pseudodifferential operator over $\mathbb Q_p^n$. Analogues of the Euclidean $P(\varphi)$-theories with free and half-Dirichlet boundary conditions are considered.
@article{TM_2004_245_a14,
     author = {A. N. Kochubei and M. R. Sait-Ametov},
     title = {Construction of {Interaction} {Measures} on the {Space} of {Distributions} over the {Field} of $p${-Adic} {Numbers}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {146--153},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a14/}
}
TY  - JOUR
AU  - A. N. Kochubei
AU  - M. R. Sait-Ametov
TI  - Construction of Interaction Measures on the Space of Distributions over the Field of $p$-Adic Numbers
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 146
EP  - 153
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a14/
LA  - en
ID  - TM_2004_245_a14
ER  - 
%0 Journal Article
%A A. N. Kochubei
%A M. R. Sait-Ametov
%T Construction of Interaction Measures on the Space of Distributions over the Field of $p$-Adic Numbers
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 146-153
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a14/
%G en
%F TM_2004_245_a14
A. N. Kochubei; M. R. Sait-Ametov. Construction of Interaction Measures on the Space of Distributions over the Field of $p$-Adic Numbers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 146-153. http://geodesic.mathdoc.fr/item/TM_2004_245_a14/

[1] Bruhat F., “Distributions sur un groupe localement compact et applications à l'etude des représentations des groupes $p$-adiques”, Bull. Soc. Math. France, 89 (1961), 43–75 | MR | Zbl

[2] Glimm J., Jaffe A., Quantum physics. A functional integral point of view, Springer, New York, 1981 | MR | Zbl

[3] Khrennikov A., Non-Archimedean analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl

[4] Kochubei A. N., Pseudo-differential equations and stochastics over non-Archimedean fields, M. Dekker, New York, 2001 | MR | Zbl

[5] Kochubei A. N., “O $p$-adicheskikh funktsiyakh Grina”, Teor. i mat. fizika, 96 (1993), 123–139 | MR | Zbl

[6] Lerner E. Yu., Missarov M. D., “Skalyarnye modeli $p$-adicheskoi kvantovoi teorii polya i ierarkhicheskie modeli”, Teor. i mat. fizika, 78 (1989), 248–257 | MR

[7] Lerner E. Y., Missarov M. D., “$p$-Adic Feynman and string amplitudes”, Commun. Math. Phys., 121 (1989), 35–48 | DOI | MR | Zbl

[8] Magnen J., “Constructive methods and results”, XI Intern. Congr. Math. Phys., ed. D. Iagolnitzer, Intern. Press, Cambridge, MA, 1995, 121–141 | MR | Zbl

[9] Missarov M. D., “$p$-Adic $\varphi^4$-theory as a functional equation problem”, Lett. Math. Phys., 39 (1997), 253–260 | DOI | MR | Zbl

[10] Phillips R. S., “The extensions of dual subspaces invariant under an algebra”, Proc. Intern. Symp. Linear Spaces (Jerusalem, 1960), Pergamon Press, Oxford, 1961, 366–398 | MR

[11] Reed M., Simon B., Methods of modern mathematical physics. V. 2: Fourier analysis self-adjointness, Acad. Press, New York, 1975 | MR | Zbl

[12] Simon B., The $P(\varphi)_2$ Euclidean quantum field theory, Princeton Univ. Press, Princeton, 1974 | MR | Zbl

[13] Varadarajan V. S., “Non-Archimedean models for space–time”, Mod. Phys. Lett. A., 16 (2001), 387–395 | DOI | MR

[14] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[15] Vladimirov V. S., Volovich I. V., “$p$-Adic quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl