Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_245_a1, author = {V. S. Vladimirov}, title = {Adelic {Formulas} for {Four-Particle} {String} and {Superstring} {Tree} {Amplitudes} in {One-Class} {Quadratic} {Fields}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {9--28}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a1/} }
TY - JOUR AU - V. S. Vladimirov TI - Adelic Formulas for Four-Particle String and Superstring Tree Amplitudes in One-Class Quadratic Fields JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 9 EP - 28 VL - 245 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2004_245_a1/ LA - ru ID - TM_2004_245_a1 ER -
%0 Journal Article %A V. S. Vladimirov %T Adelic Formulas for Four-Particle String and Superstring Tree Amplitudes in One-Class Quadratic Fields %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2004 %P 9-28 %V 245 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2004_245_a1/ %G ru %F TM_2004_245_a1
V. S. Vladimirov. Adelic Formulas for Four-Particle String and Superstring Tree Amplitudes in One-Class Quadratic Fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 9-28. http://geodesic.mathdoc.fr/item/TM_2004_245_a1/
[1] Vladimirov V. C., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR
[2] Khrennikov A., $p$-Adic valued distributions in mathematical physics, Kluwer, Dordrecht, 1994 | MR | Zbl
[3] Schikhof W. H., Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[4] Brekke L., Freund P. G. O., “$p$-Adic numbers in physics”, Phys. Rept., 233:1 (1993), 1–66 | DOI | MR
[5] Vladimirov V. S., “Adelic formulas for gamma- and beta-functions in algebraic number fields”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 192, M. Dekker, New York, 1997, 383–395 | MR | Zbl
[6] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B., 199:2 (1987), 191–194 | DOI | MR
[7] Volovich I. V., “$p$-Adic string”, Class. and Quant. Grav., 4 (1987), L83–L87 | DOI | MR
[8] Volovich I. V., “Harmonic analysis and $p$-adic strings”, Lett. Math. Phys., 16 (1988), 61–67 | DOI | MR | Zbl
[9] Freund P. G. O., Olson M., “Non-Archimedean strings”, Phys. Lett. B., 199:2 (1987), 186–190 | DOI | MR
[10] Frampton P. H., Okada Y., Ubriaco M. R., “On adelic formulas for the $p$-adic string”, Phys. Lett. B., 213:3 (1988), 260–262 | DOI | MR
[11] Frampton P. H., Nishino H., “Theory of $p$-adic closed strings”, Phys. Rev. Lett., 62:17 (1989), 1960–1963 | DOI | MR
[12] Aref'eva I. Ya., Dragovic B. G., Volovich I. V., “On the adelic string amplitudes”, Phys. Lett. B., 209:4 (1988), 445–450 | DOI | MR
[13] Aref'eva I. Ya., Dragovic B. G., Volovich I. V., “Open and closed $p$-adic strings and quadratic extentions of number fields”, Phys. Lett. B., 212:3 (1988), 283–291 | DOI | MR
[14] Ruelle Ph., Thiran E., Verstegen D., Weyers J., “Adelic string and superstring amplitudes”, Mod. Phys. Lett. A., 4:18 (1989), 1745–1752 | DOI | MR
[15] Vladimirov V.S., “On the Freund–Witten adelic formula for Veneziano amplitudes”, Lett. Math. Phys., 27 (1993), 123–131 | DOI | MR | Zbl
[16] Vladimirov V. S., “Adelnye formuly Freinda–Vittena dlya amplitud Venetsiano i Virasoro–Shapiro”, UMN, 48:6 (1993), 3–38 | MR | Zbl
[17] Vladimirov V. S., Sapuzhak T. M., “Adelic formulas for string amplitudes in fields of algebraic numbers”, Lett. Math. Phys., 37 (1996), 233–242 | DOI | MR | Zbl
[18] Vladimirov V. C., “Adelnye formuly dlya gamma- i beta-funktsii v polyakh algebraicheskikh chisel”, Dokl. RAN, 347:1 (1996), 11–15 | MR | Zbl
[19] Vladimirov V. S., “Adelnye formuly dlya gamma- i beta-funktsii popolnenii polei algebraicheskikh chisel i ikh primeneniya k strunnym amplitudam”, Izv. RAN. Ser. mat., 60:1 (1996), 63–86 | MR | Zbl
[20] Vladimirov V. S., “Adelnye formuly dlya gamma- i beta-funktsii odnoklassnykh kvadratichnykh polei. Primeneniya k 4-chastichnym strunnym amplitudam rasseyaniya”, Tr. MIAN, 228, 2000, 76–89 | MR | Zbl
[21] Vladimirov V. S., “Beta-funktsii lokalnykh polei kharakteristiki nul. Primeneniya k strunnym amplitudam”, Izv. RAN. Ser. mat., 66:1 (2002), 43–58 | MR | Zbl
[22] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR
[23] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR
[24] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[25] Vladimirov V. S., “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Tr. MIAN, 224, 1999, 122–129 | MR | Zbl
[26] Grin M., Shvarts Dzh., Vitten E., Teoriya superstrun, 1, 2, Mir, M., 1990
[27] Kawai H., Lewellen D. C., Tye S.-H., “A relation between tree amplitudes of closed and open strings”, Nucl. Phys. B., 269 (1986), 1–23 | DOI | MR
[28] Khrennikov A. Yu., Nearkhimedov analiz i ego prilozheniya, Fizmatlit, M., 2003 | MR | Zbl