Adelic Formulas for Four-Particle String and Superstring Tree Amplitudes in One-Class Quadratic Fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 9-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Regularized adelic formulas for gamma and beta functions for arbitrary fields of algebraic numbers and arbitrary quasicharacters (ramified or not) are constructed under the condition that the corresponding quasicharacter of the idèle group of the field is trivial on the subgroup of principal idèles of this field. The problem of regularizing divergent infinite products for gamma and beta functions of local fields is solved. For the field of rational numbers and for the one-class quadratic fields, specific expressions for the adelic formulas are given. Applications to four-tachyon tree string amplitudes, generalized Veneziano amplitudes, Virasoro amplitudes with arbitrary perturbations, massless four-particle tree amplitudes (for open and closed superstrings), Neveu–Schwarz–Ramond superstring amplitudes, and amplitudes for four charged particles of a heterotic superstring are discussed.
@article{TM_2004_245_a1,
     author = {V. S. Vladimirov},
     title = {Adelic {Formulas} for {Four-Particle} {String} and {Superstring} {Tree} {Amplitudes} in {One-Class} {Quadratic} {Fields}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {9--28},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a1/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Adelic Formulas for Four-Particle String and Superstring Tree Amplitudes in One-Class Quadratic Fields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 9
EP  - 28
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a1/
LA  - ru
ID  - TM_2004_245_a1
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Adelic Formulas for Four-Particle String and Superstring Tree Amplitudes in One-Class Quadratic Fields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 9-28
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a1/
%G ru
%F TM_2004_245_a1
V. S. Vladimirov. Adelic Formulas for Four-Particle String and Superstring Tree Amplitudes in One-Class Quadratic Fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 9-28. http://geodesic.mathdoc.fr/item/TM_2004_245_a1/

[1] Vladimirov V. C., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[2] Khrennikov A., $p$-Adic valued distributions in mathematical physics, Kluwer, Dordrecht, 1994 | MR | Zbl

[3] Schikhof W. H., Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[4] Brekke L., Freund P. G. O., “$p$-Adic numbers in physics”, Phys. Rept., 233:1 (1993), 1–66 | DOI | MR

[5] Vladimirov V. S., “Adelic formulas for gamma- and beta-functions in algebraic number fields”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 192, M. Dekker, New York, 1997, 383–395 | MR | Zbl

[6] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B., 199:2 (1987), 191–194 | DOI | MR

[7] Volovich I. V., “$p$-Adic string”, Class. and Quant. Grav., 4 (1987), L83–L87 | DOI | MR

[8] Volovich I. V., “Harmonic analysis and $p$-adic strings”, Lett. Math. Phys., 16 (1988), 61–67 | DOI | MR | Zbl

[9] Freund P. G. O., Olson M., “Non-Archimedean strings”, Phys. Lett. B., 199:2 (1987), 186–190 | DOI | MR

[10] Frampton P. H., Okada Y., Ubriaco M. R., “On adelic formulas for the $p$-adic string”, Phys. Lett. B., 213:3 (1988), 260–262 | DOI | MR

[11] Frampton P. H., Nishino H., “Theory of $p$-adic closed strings”, Phys. Rev. Lett., 62:17 (1989), 1960–1963 | DOI | MR

[12] Aref'eva I. Ya., Dragovic B. G., Volovich I. V., “On the adelic string amplitudes”, Phys. Lett. B., 209:4 (1988), 445–450 | DOI | MR

[13] Aref'eva I. Ya., Dragovic B. G., Volovich I. V., “Open and closed $p$-adic strings and quadratic extentions of number fields”, Phys. Lett. B., 212:3 (1988), 283–291 | DOI | MR

[14] Ruelle Ph., Thiran E., Verstegen D., Weyers J., “Adelic string and superstring amplitudes”, Mod. Phys. Lett. A., 4:18 (1989), 1745–1752 | DOI | MR

[15] Vladimirov V.S., “On the Freund–Witten adelic formula for Veneziano amplitudes”, Lett. Math. Phys., 27 (1993), 123–131 | DOI | MR | Zbl

[16] Vladimirov V. S., “Adelnye formuly Freinda–Vittena dlya amplitud Venetsiano i Virasoro–Shapiro”, UMN, 48:6 (1993), 3–38 | MR | Zbl

[17] Vladimirov V. S., Sapuzhak T. M., “Adelic formulas for string amplitudes in fields of algebraic numbers”, Lett. Math. Phys., 37 (1996), 233–242 | DOI | MR | Zbl

[18] Vladimirov V. C., “Adelnye formuly dlya gamma- i beta-funktsii v polyakh algebraicheskikh chisel”, Dokl. RAN, 347:1 (1996), 11–15 | MR | Zbl

[19] Vladimirov V. S., “Adelnye formuly dlya gamma- i beta-funktsii popolnenii polei algebraicheskikh chisel i ikh primeneniya k strunnym amplitudam”, Izv. RAN. Ser. mat., 60:1 (1996), 63–86 | MR | Zbl

[20] Vladimirov V. S., “Adelnye formuly dlya gamma- i beta-funktsii odnoklassnykh kvadratichnykh polei. Primeneniya k 4-chastichnym strunnym amplitudam rasseyaniya”, Tr. MIAN, 228, 2000, 76–89 | MR | Zbl

[21] Vladimirov V. S., “Beta-funktsii lokalnykh polei kharakteristiki nul. Primeneniya k strunnym amplitudam”, Izv. RAN. Ser. mat., 66:1 (2002), 43–58 | MR | Zbl

[22] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[23] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR

[24] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[25] Vladimirov V. S., “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Tr. MIAN, 224, 1999, 122–129 | MR | Zbl

[26] Grin M., Shvarts Dzh., Vitten E., Teoriya superstrun, 1, 2, Mir, M., 1990

[27] Kawai H., Lewellen D. C., Tye S.-H., “A relation between tree amplitudes of closed and open strings”, Nucl. Phys. B., 269 (1986), 1–23 | DOI | MR

[28] Khrennikov A. Yu., Nearkhimedov analiz i ego prilozheniya, Fizmatlit, M., 2003 | MR | Zbl