On Sharp Constants in Inequalities for the Modulus of a~Derivative
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 104-126
Voir la notice de l'article provenant de la source Math-Net.Ru
For every $1\le r\le\infty$, we solve a Kolmogorov-type problem of describing all triples of numbers $\mu _0,\mu _1,\mu _2\ge 0$ for which there exists a function $f$ with an absolutely continuous derivative on the interval $[0,1]$ such that $\|f\|_{L_\infty (0,1)}=\mu _0$, $|f'(x)|=\mu _1$, and $\|f''\|_{L_r(0,1)}=\mu _2$, where $x$ is a fixed point in the interval $[0,1]$.
@article{TM_2003_243_a9,
author = {V. I. Burenkov and V. A. Gusakov},
title = {On {Sharp} {Constants} in {Inequalities} for the {Modulus} of {a~Derivative}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {104--126},
publisher = {mathdoc},
volume = {243},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2003_243_a9/}
}
TY - JOUR AU - V. I. Burenkov AU - V. A. Gusakov TI - On Sharp Constants in Inequalities for the Modulus of a~Derivative JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 104 EP - 126 VL - 243 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2003_243_a9/ LA - ru ID - TM_2003_243_a9 ER -
V. I. Burenkov; V. A. Gusakov. On Sharp Constants in Inequalities for the Modulus of a~Derivative. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 104-126. http://geodesic.mathdoc.fr/item/TM_2003_243_a9/