On the Gram Matrices of Systems of Uniformly Bounded Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 237-243
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A_N$, $N=1,2,\dots $, be the set of the Gram matrices of systems $\{e_j\}_{j=1}^N$ formed by vectors $e_j$ of a Hilbert space $H$ with norms $\|e_j\|_H\le 1$, $j=1,\dots ,N$. Let $B_N(K)$ be the set of the Gram matrices of systems $\{f_j\}_{j=1}^N$ formed by functions $f_j\in L^\infty (0,1)$ with $\|f_j\|_{L^\infty (0,1)}\le K$, $j=1,\dots ,N$. It is shown that, for any $K$, the set $B_N(K)$ is narrower than $A_N$ as $N\to \infty$. More precisely, it is proved that not every matrix $A$ in $A_N$ can be represented as $A=B+\Delta $, where $B\in B_N(K)$ and $\Delta $ is a diagonal matrix.
@article{TM_2003_243_a16,
author = {B. S. Kashin and S. J. Szarek},
title = {On the {Gram} {Matrices} of {Systems} of {Uniformly} {Bounded} {Functions}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {237--243},
publisher = {mathdoc},
volume = {243},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2003_243_a16/}
}
TY - JOUR AU - B. S. Kashin AU - S. J. Szarek TI - On the Gram Matrices of Systems of Uniformly Bounded Functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 237 EP - 243 VL - 243 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2003_243_a16/ LA - ru ID - TM_2003_243_a16 ER -
B. S. Kashin; S. J. Szarek. On the Gram Matrices of Systems of Uniformly Bounded Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 237-243. http://geodesic.mathdoc.fr/item/TM_2003_243_a16/