On the Gram Matrices of Systems of Uniformly Bounded Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 237-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A_N$, $N=1,2,\dots $, be the set of the Gram matrices of systems $\{e_j\}_{j=1}^N$ formed by vectors $e_j$ of a Hilbert space $H$ with norms $\|e_j\|_H\le 1$, $j=1,\dots ,N$. Let $B_N(K)$ be the set of the Gram matrices of systems $\{f_j\}_{j=1}^N$ formed by functions $f_j\in L^\infty (0,1)$ with $\|f_j\|_{L^\infty (0,1)}\le K$, $j=1,\dots ,N$. It is shown that, for any $K$, the set $B_N(K)$ is narrower than $A_N$ as $N\to \infty$. More precisely, it is proved that not every matrix $A$ in $A_N$ can be represented as $A=B+\Delta $, where $B\in B_N(K)$ and $\Delta $ is a diagonal matrix.
@article{TM_2003_243_a16,
     author = {B. S. Kashin and S. J. Szarek},
     title = {On the {Gram} {Matrices} of {Systems} of {Uniformly} {Bounded} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {237--243},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2003_243_a16/}
}
TY  - JOUR
AU  - B. S. Kashin
AU  - S. J. Szarek
TI  - On the Gram Matrices of Systems of Uniformly Bounded Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 237
EP  - 243
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2003_243_a16/
LA  - ru
ID  - TM_2003_243_a16
ER  - 
%0 Journal Article
%A B. S. Kashin
%A S. J. Szarek
%T On the Gram Matrices of Systems of Uniformly Bounded Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 237-243
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2003_243_a16/
%G ru
%F TM_2003_243_a16
B. S. Kashin; S. J. Szarek. On the Gram Matrices of Systems of Uniformly Bounded Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 237-243. http://geodesic.mathdoc.fr/item/TM_2003_243_a16/

[1] Kashin B. S., Szarek S. J., “The Knaster problem and the geometry of high-dimensional cubes”, C. R. Acad. Sci. Paris. Ser. 1, 336 (2003), 931–936 | MR | Zbl

[2] Menchoff D., “Sur les séries de fonctions orthogonales bornées dans leur ensemble”, Mat. sb., 3 (1938), 103–120 | Zbl

[3] Olevskii A. M., Fourier series with respect to general orthogonal systems, Springer, Berlin, 1975 | MR | Zbl

[4] Pisier G., Factorization of linear operators and geometry of Banach spaces, CBMS Reg. Conf. Ser. Math., 60, Amer. Math. Soc., Providence, RI, 1986 | MR

[5] Megretski A., “Relaxation of quadratic programs in operator theory and system analysis”, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 365–392 | MR | Zbl