A~Method of Composite Grids on a~Prism with an Arbitrary Polygonal Base
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 138-160
Voir la notice de l'article provenant de la source Math-Net.Ru
The Dirichlet problem for the Laplace equation on a right prism with an arbitrary polygonal base is considered. A method of composite cubic and cylindrical grids is developed that allows one to obtain an approximate solution to this problem. Under certain conditions imposed on the smoothness of boundary values, the uniform convergence with the rate $O(h^2\ln h^{-1})$ is established for a difference solution on a composite grid with the total number of nodes $O(h^{-3}\ln h^{-1})$, where $h$ is the step of a cubic grid.
@article{TM_2003_243_a11,
author = {E. A. Volkov},
title = {A~Method of {Composite} {Grids} on {a~Prism} with an {Arbitrary} {Polygonal} {Base}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {138--160},
publisher = {mathdoc},
volume = {243},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2003_243_a11/}
}
TY - JOUR AU - E. A. Volkov TI - A~Method of Composite Grids on a~Prism with an Arbitrary Polygonal Base JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 138 EP - 160 VL - 243 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2003_243_a11/ LA - ru ID - TM_2003_243_a11 ER -
E. A. Volkov. A~Method of Composite Grids on a~Prism with an Arbitrary Polygonal Base. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 138-160. http://geodesic.mathdoc.fr/item/TM_2003_243_a11/