Correct Solvability of Hyperbolic-Type Equations with Delay in a~Hilbert Space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 127-137
Voir la notice de l'article provenant de la source Math-Net.Ru
Correct solvability in the scale of Sobolev spaces on the half-line is established for an initial value problem for one class of functional differential equations with unbounded operator-valued coefficients in a Hilbert space. The cases of constant and variable time delays are analyzed. The principal part of the equations under study is an abstract hyperbolic equation in a Hilbert space.
@article{TM_2003_243_a10,
author = {V. V. Vlasov and K. I. Shmatov},
title = {Correct {Solvability} of {Hyperbolic-Type} {Equations} with {Delay} in {a~Hilbert} {Space}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {127--137},
publisher = {mathdoc},
volume = {243},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2003_243_a10/}
}
TY - JOUR AU - V. V. Vlasov AU - K. I. Shmatov TI - Correct Solvability of Hyperbolic-Type Equations with Delay in a~Hilbert Space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 127 EP - 137 VL - 243 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2003_243_a10/ LA - ru ID - TM_2003_243_a10 ER -
%0 Journal Article %A V. V. Vlasov %A K. I. Shmatov %T Correct Solvability of Hyperbolic-Type Equations with Delay in a~Hilbert Space %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2003 %P 127-137 %V 243 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2003_243_a10/ %G ru %F TM_2003_243_a10
V. V. Vlasov; K. I. Shmatov. Correct Solvability of Hyperbolic-Type Equations with Delay in a~Hilbert Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 127-137. http://geodesic.mathdoc.fr/item/TM_2003_243_a10/