On Prenex Fragment of Provability Logic with Quantifiers on Proofs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical logic and algebra, Tome 242 (2003), pp. 123-135

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a fragment of provability logic with quantifiers on proofs that consists of formulas with no occurrences of quantifiers in the scope of the proof predicate. By definition, a logic ql is the set of formulas that are true in the standard model of arithmetic under every interpretation based on the standard Gödel proof predicate. We describe Kripke-style semantics for the logic ql and prove the corresponding completeness theorem. For the case of injective arithmetical interpretations, the decidability is proved.
@article{TM_2003_242_a9,
     author = {R. \`E. Yavorskii},
     title = {On {Prenex} {Fragment} of {Provability} {Logic} with {Quantifiers} on {Proofs}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {123--135},
     publisher = {mathdoc},
     volume = {242},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2003_242_a9/}
}
TY  - JOUR
AU  - R. È. Yavorskii
TI  - On Prenex Fragment of Provability Logic with Quantifiers on Proofs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 123
EP  - 135
VL  - 242
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2003_242_a9/
LA  - ru
ID  - TM_2003_242_a9
ER  - 
%0 Journal Article
%A R. È. Yavorskii
%T On Prenex Fragment of Provability Logic with Quantifiers on Proofs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 123-135
%V 242
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2003_242_a9/
%G ru
%F TM_2003_242_a9
R. È. Yavorskii. On Prenex Fragment of Provability Logic with Quantifiers on Proofs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical logic and algebra, Tome 242 (2003), pp. 123-135. http://geodesic.mathdoc.fr/item/TM_2003_242_a9/