A~Diophantine Representation of Bernoulli Numbers and Its Applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical logic and algebra, Tome 242 (2003), pp. 98-102
Voir la notice de l'article provenant de la source Math-Net.Ru
A new method for constructing a Diophantine representation of Bernoulli numbers is proposed. The method is based on the Taylor series for the function $\tau /(e^\tau -1)$. This representation can be used for constructing Diophantine representations of the set of all Carmichael numbers (i.e. numbers that are pseudoprime for every base) and for the set of all square-free numbers.
@article{TM_2003_242_a6,
author = {Yu. V. Matiyasevich},
title = {A~Diophantine {Representation} of {Bernoulli} {Numbers} and {Its} {Applications}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {98--102},
publisher = {mathdoc},
volume = {242},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2003_242_a6/}
}
TY - JOUR AU - Yu. V. Matiyasevich TI - A~Diophantine Representation of Bernoulli Numbers and Its Applications JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 98 EP - 102 VL - 242 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2003_242_a6/ LA - ru ID - TM_2003_242_a6 ER -
Yu. V. Matiyasevich. A~Diophantine Representation of Bernoulli Numbers and Its Applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical logic and algebra, Tome 242 (2003), pp. 98-102. http://geodesic.mathdoc.fr/item/TM_2003_242_a6/