Note on a~Translation to Characterize Constructivity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical logic and algebra, Tome 242 (2003), pp. 136-140
Voir la notice de l'article provenant de la source Math-Net.Ru
This note describes a straightforward translation $\mathcal C^{(1)}$ such that
$T\vdash A(t)$ for some term $t$ $\Leftrightarrow$ $\mathcal C^{(1)}(T)\vdash
\mathcal C^{(1)}(\exists xA(x))$ for universal $T$ and purely existential $\exists
xA(x)$. The correspondence is based on the properties of resolution
calculus.
@article{TM_2003_242_a10,
author = {M. Baaz},
title = {Note on {a~Translation} to {Characterize} {Constructivity}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {136--140},
publisher = {mathdoc},
volume = {242},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2003_242_a10/}
}
M. Baaz. Note on a~Translation to Characterize Constructivity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical logic and algebra, Tome 242 (2003), pp. 136-140. http://geodesic.mathdoc.fr/item/TM_2003_242_a10/