Vector Bundles and Arithmetic Groups.~II
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 179-191
Voir la notice de l'article provenant de la source Math-Net.Ru
A relation is established between the Bruhat–Tits tree of the group $\mathrm {PGL}(2)$ and the set of vector bundles of an algebraic surface. This relation generalizes the well-known result of J.-P. Serre for algebraic curves.
@article{TM_2003_241_a9,
author = {A. N. Parshin},
title = {Vector {Bundles} and {Arithmetic} {Groups.~II}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {179--191},
publisher = {mathdoc},
volume = {241},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2003_241_a9/}
}
A. N. Parshin. Vector Bundles and Arithmetic Groups.~II. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 179-191. http://geodesic.mathdoc.fr/item/TM_2003_241_a9/