The Equicharacteristic Case of the Gersten Conjecture
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 169-178
Voir la notice de l'article provenant de la source Math-Net.Ru
One of the well-known problems in the algebraic $K$-theory is the Gersten
conjecture. The geometric case of this conjecture was proved by D. Quillen.
The equicharacteristic case of the conjecture is proved in this paper. This
covers the result of Quillen. Actually we use the result of Quillen and
certain results of D. Popescu and A. Grothendieck.
@article{TM_2003_241_a8,
author = {I. A. Panin},
title = {The {Equicharacteristic} {Case} of the {Gersten} {Conjecture}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {169--178},
publisher = {mathdoc},
volume = {241},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2003_241_a8/}
}
I. A. Panin. The Equicharacteristic Case of the Gersten Conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 169-178. http://geodesic.mathdoc.fr/item/TM_2003_241_a8/