Generalized Chisini's Conjecture
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 122-131

Voir la notice de l'article provenant de la source Math-Net.Ru

Chisini's Conjecture claims that a generic covering of the plane of degree $\geq 5$ is determined uniquely by its branch curve. A generalization (to the case of normal surfaces) of Chisini's Conjecture is formulated and considered. The generalized conjecture is checked in the following two cases: when the maximum of degrees of two generic coverings $\geq 12$ and when it $\leq 4$. Conditions on the number of singular points of a cuspidal curve $B$ necessary for $B$ to be the branch curve of a generic covering of given degree are found. In particular, it is shown that, if $B$ is a pure cuspidal curve (i.e. all its singular points are ordinary cusps), then $B$ can be the branch curve only of a generic covering of degree $\leq 5$.
@article{TM_2003_241_a6,
     author = {Vik. S. Kulikov},
     title = {Generalized {Chisini's} {Conjecture}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {122--131},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2003_241_a6/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Generalized Chisini's Conjecture
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 122
EP  - 131
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2003_241_a6/
LA  - ru
ID  - TM_2003_241_a6
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Generalized Chisini's Conjecture
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 122-131
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2003_241_a6/
%G ru
%F TM_2003_241_a6
Vik. S. Kulikov. Generalized Chisini's Conjecture. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 122-131. http://geodesic.mathdoc.fr/item/TM_2003_241_a6/