An Explicit Classification of Formal Groups over Local Fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 43-67
Voir la notice du chapitre de livre
An explicit classification of formal groups up to isogeny and isomorphism over rings of integers of local fields with the use of two new invariants is given.
@article{TM_2003_241_a1,
author = {M. V. Bondarko and S. V. Vostokov},
title = {An {Explicit} {Classification} of {Formal} {Groups} over {Local} {Fields}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {43--67},
year = {2003},
volume = {241},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2003_241_a1/}
}
M. V. Bondarko; S. V. Vostokov. An Explicit Classification of Formal Groups over Local Fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 43-67. http://geodesic.mathdoc.fr/item/TM_2003_241_a1/
[6] Breuil C., “Groupes $p$-divisibles, groupes finis et modules filtrés”, Ann. Math., 152:2 (2000), 489–549 | DOI | MR | Zbl
[7] Fontaine J. M., Groupes $p$-divisibles sur les corps locaux, Astérisque, 47, 48, Soc. Math. France, Paris, 1977 | MR
[8] Hazewinkel M., Formal groups and applications, Acad. Press, New York, 1978 | MR | Zbl
[9] Laffaille G., “Construction de groupes $p$-divisibles: Le cas de dimension $1$”, Astérisque, 65, 1979, 103–123 | MR | Zbl
[10] Oort F., “Dieudonne modules of finite local group schemes”, Indag. Math., 36 (1974), 284–292 | MR