Extension Theorem in the Theory of Isohedral Tilings and Its Applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 146-169
Voir la notice de l'article provenant de la source Math-Net.Ru
A detailed proof is given for one of the basic theorems in the theory of isohedral tilings, the extension theorem, which describes necessary and sufficient conditions under which a given polyhedron admits an isohedral tiling of a space of constant curvature.
@article{TM_2002_239_a9,
author = {N. P. Dolbilin and V. S. Makarov},
title = {Extension {Theorem} in the {Theory} of {Isohedral} {Tilings} and {Its} {Applications}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {146--169},
publisher = {mathdoc},
volume = {239},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a9/}
}
TY - JOUR AU - N. P. Dolbilin AU - V. S. Makarov TI - Extension Theorem in the Theory of Isohedral Tilings and Its Applications JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 146 EP - 169 VL - 239 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_239_a9/ LA - ru ID - TM_2002_239_a9 ER -
N. P. Dolbilin; V. S. Makarov. Extension Theorem in the Theory of Isohedral Tilings and Its Applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 146-169. http://geodesic.mathdoc.fr/item/TM_2002_239_a9/