The Number of Lattice Points in a Spherical Layer
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 332-335
Cet article a éte moissonné depuis la source Math-Net.Ru
New dependences between lattices and their duals are established. In Euclidean spaces of large dimensions, an exponential lower bound for the number of points of a lattice $L$ that lie in a spherical layer with close inner and outer radii is obtained. The radii are reciprocal to the packing radius of the dual lattice $L'$.
@article{TM_2002_239_a22,
author = {V. A. Yudin},
title = {The {Number} of {Lattice} {Points} in {a~Spherical} {Layer}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {332--335},
year = {2002},
volume = {239},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a22/}
}
V. A. Yudin. The Number of Lattice Points in a Spherical Layer. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 332-335. http://geodesic.mathdoc.fr/item/TM_2002_239_a22/
[1] Kassels Dzh. V., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR
[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl
[3] Yudin V. A., “Dve ekstremalnye zadachi dlya trigonometricheskikh polinomov”, Mat. sb., 187:11 (1996), 145–160 | MR | Zbl
[4] M. B. Sevryuk, V. B. Fillipov (red.), Zadachi Arnolda, Fazis, M., 2000 | MR
[5] Vatson G., Teoriya besselevykh funktsii. Ch. 1, Izd-vo inostr. lit., M., 1949
[6] Yudin V. A., “Raspolozhenie tochek na tore i ekstremalnye svoistva polinomov”, Tr. MIAN, 219, 1997, 453–463 | MR | Zbl