The Number of Lattice Points in a Spherical Layer
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 332-335
Voir la notice du chapitre de livre
New dependences between lattices and their duals are established. In Euclidean spaces of large dimensions, an exponential lower bound for the number of points of a lattice $L$ that lie in a spherical layer with close inner and outer radii is obtained. The radii are reciprocal to the packing radius of the dual lattice $L'$.
@article{TM_2002_239_a22,
author = {V. A. Yudin},
title = {The {Number} of {Lattice} {Points} in {a~Spherical} {Layer}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {332--335},
year = {2002},
volume = {239},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a22/}
}
V. A. Yudin. The Number of Lattice Points in a Spherical Layer. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 332-335. http://geodesic.mathdoc.fr/item/TM_2002_239_a22/
[1] Kassels Dzh. V., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR
[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl
[3] Yudin V. A., “Dve ekstremalnye zadachi dlya trigonometricheskikh polinomov”, Mat. sb., 187:11 (1996), 145–160 | MR | Zbl
[4] M. B. Sevryuk, V. B. Fillipov (red.), Zadachi Arnolda, Fazis, M., 2000 | MR
[5] Vatson G., Teoriya besselevykh funktsii. Ch. 1, Izd-vo inostr. lit., M., 1949
[6] Yudin V. A., “Raspolozhenie tochek na tore i ekstremalnye svoistva polinomov”, Tr. MIAN, 219, 1997, 453–463 | MR | Zbl