The Number of Lattice Points in a Spherical Layer
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 332-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

New dependences between lattices and their duals are established. In Euclidean spaces of large dimensions, an exponential lower bound for the number of points of a lattice $L$ that lie in a spherical layer with close inner and outer radii is obtained. The radii are reciprocal to the packing radius of the dual lattice $L'$.
@article{TM_2002_239_a22,
     author = {V. A. Yudin},
     title = {The {Number} of {Lattice} {Points} in {a~Spherical} {Layer}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {332--335},
     year = {2002},
     volume = {239},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a22/}
}
TY  - JOUR
AU  - V. A. Yudin
TI  - The Number of Lattice Points in a Spherical Layer
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 332
EP  - 335
VL  - 239
UR  - http://geodesic.mathdoc.fr/item/TM_2002_239_a22/
LA  - ru
ID  - TM_2002_239_a22
ER  - 
%0 Journal Article
%A V. A. Yudin
%T The Number of Lattice Points in a Spherical Layer
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 332-335
%V 239
%U http://geodesic.mathdoc.fr/item/TM_2002_239_a22/
%G ru
%F TM_2002_239_a22
V. A. Yudin. The Number of Lattice Points in a Spherical Layer. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 332-335. http://geodesic.mathdoc.fr/item/TM_2002_239_a22/

[1] Kassels Dzh. V., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[3] Yudin V. A., “Dve ekstremalnye zadachi dlya trigonometricheskikh polinomov”, Mat. sb., 187:11 (1996), 145–160 | MR | Zbl

[4] M. B. Sevryuk, V. B. Fillipov (red.), Zadachi Arnolda, Fazis, M., 2000 | MR

[5] Vatson G., Teoriya besselevykh funktsii. Ch. 1, Izd-vo inostr. lit., M., 1949

[6] Yudin V. A., “Raspolozhenie tochek na tore i ekstremalnye svoistva polinomov”, Tr. MIAN, 219, 1997, 453–463 | MR | Zbl