Sheaf Cohomology and Dimension of Ordered Sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 289-317
Voir la notice de l'article provenant de la source Math-Net.Ru
The general concept of flabbiness and flabby dimension in abelian categories and, as particular cases, flabby and soft dimensions of quasiordered sets are considered. The sheaf theory technique is developed to the level that allows one to obtain the basic theorem of the cohomological theory of dimension, including flabby and Bredon's dimensions.
@article{TM_2002_239_a19,
author = {E. E. Skurikhin},
title = {Sheaf {Cohomology} and {Dimension} of {Ordered} {Sets}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {289--317},
publisher = {mathdoc},
volume = {239},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a19/}
}
E. E. Skurikhin. Sheaf Cohomology and Dimension of Ordered Sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 289-317. http://geodesic.mathdoc.fr/item/TM_2002_239_a19/