Generalized Barycentric Subdivision of a Triangle
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 275-283
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem naturally extending the theorem of Barany, Beardon, and Carne about the density of the classes of similar triangles obtained from a given triangle by applying an infinite series of barycentric subdivisions is proved.
@article{TM_2002_239_a17,
author = {A. A. Ordin},
title = {Generalized {Barycentric} {Subdivision} of a {Triangle}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {275--283},
publisher = {mathdoc},
volume = {239},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a17/}
}
A. A. Ordin. Generalized Barycentric Subdivision of a Triangle. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 275-283. http://geodesic.mathdoc.fr/item/TM_2002_239_a17/