Quadratic and Rigidity Mappings
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 195-214

Voir la notice de l'article provenant de la source Math-Net.Ru

As opposed to the case of functions, the quadratic mappings from $\mathbb R^l$ to$\mathcal R^r$ for not too small $l$ and $r$ are studied immeasurably worse than the linear ones. Likewise, little is known about the class of quadratic mappings whose coordinate functions are the squares of certain pairwise distances between points thrown into a Euclidean space (this class is important for the Euclidean geometry). Such mappings are called rigidity mappings in this paper. The geometric properties of rigidity mappings are discussed. The tangent cone of a mapping and the notions of stability and rigidity order of a point under a mapping, which arise in the theory of hinged mechanisms, are studied from general positions.
@article{TM_2002_239_a12,
     author = {M. D. Kovalev},
     title = {Quadratic and {Rigidity} {Mappings}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {195--214},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a12/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - Quadratic and Rigidity Mappings
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 195
EP  - 214
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_239_a12/
LA  - ru
ID  - TM_2002_239_a12
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T Quadratic and Rigidity Mappings
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 195-214
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_239_a12/
%G ru
%F TM_2002_239_a12
M. D. Kovalev. Quadratic and Rigidity Mappings. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 195-214. http://geodesic.mathdoc.fr/item/TM_2002_239_a12/