On Some Lattices Connected with a~Finite Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 179-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb C[G]$ be the group ring of a finite group $G$, $\pi _r$ be a minimal central idempotent of this group ring, and $W_r=\mathbb C[G]\pi _r$ be the corresponding minimal central two-sided ideal. The ring $\mathbb C[G]$ contains the group ring $\mathbb Z[G]$, whereby the ideal $W_r$ contains a subring $A_r=\mathbb Z[G]\pi _r$. This article concerns the geometrical properties of location of the subring $A_r$ in the ideal $W_r$. The following facts are proved: (1) generally, the subgroup $A_r$ is not discrete in $W_r$; (2) if the associated irreducible character $\chi _r$ has integer values, then $A_r$ is a lattice in $W_r$; (3) if the irreducible character $\chi _r$ is real, the converse is true as well; (4) for a symmetrization $W_r^{\bullet }$ with respect to an action of a certain Galois group, the subgroup $\mathbb Z[G]\pi _r^{\bullet }$ is a lattice in $W_r^{\bullet}$.
@article{TM_2002_239_a11,
     author = {A. V. Zarelua},
     title = {On {Some} {Lattices} {Connected} with {a~Finite} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {179--194},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a11/}
}
TY  - JOUR
AU  - A. V. Zarelua
TI  - On Some Lattices Connected with a~Finite Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 179
EP  - 194
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_239_a11/
LA  - ru
ID  - TM_2002_239_a11
ER  - 
%0 Journal Article
%A A. V. Zarelua
%T On Some Lattices Connected with a~Finite Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 179-194
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_239_a11/
%G ru
%F TM_2002_239_a11
A. V. Zarelua. On Some Lattices Connected with a~Finite Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 179-194. http://geodesic.mathdoc.fr/item/TM_2002_239_a11/