Thom--Sebastiani Construction and Monodromy of Polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 106-123
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we describe the monodromy representation of a sum $f+g$ of
two polynomials $f$ and $g$ in disjoint sets of variables in terms of the
monodromy representations of $f$ and $g$. Complete results are obtained
under the assumption that the bifurcation set of $g$ is a one-point set.
@article{TM_2002_238_a6,
author = {A. Dimca and A. N\'emethi},
title = {Thom--Sebastiani {Construction} and {Monodromy} of {Polynomials}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {106--123},
publisher = {mathdoc},
volume = {238},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a6/}
}
A. Dimca; A. Némethi. Thom--Sebastiani Construction and Monodromy of Polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 106-123. http://geodesic.mathdoc.fr/item/TM_2002_238_a6/