Free Divisors and Duality for $\mathcal D$-Modules
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 97-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relationship between $\mathcal D$-modules and free divisors was studied in the general setting by L. Narváez and F. J. Calderón. Using the ideas of their works, we prove in this article a new duality formula between two $\mathcal D$-modules associated to a class of free divisors on $\mathbb C^n$ and give some applications.
@article{TM_2002_238_a5,
     author = {F. J. Castro-Jim\'enez and J. M. Ucha},
     title = {Free {Divisors} and {Duality} for $\mathcal D${-Modules}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {97--105},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a5/}
}
TY  - JOUR
AU  - F. J. Castro-Jiménez
AU  - J. M. Ucha
TI  - Free Divisors and Duality for $\mathcal D$-Modules
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 97
EP  - 105
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_238_a5/
LA  - en
ID  - TM_2002_238_a5
ER  - 
%0 Journal Article
%A F. J. Castro-Jiménez
%A J. M. Ucha
%T Free Divisors and Duality for $\mathcal D$-Modules
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 97-105
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_238_a5/
%G en
%F TM_2002_238_a5
F. J. Castro-Jiménez; J. M. Ucha. Free Divisors and Duality for $\mathcal D$-Modules. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 97-105. http://geodesic.mathdoc.fr/item/TM_2002_238_a5/

[1] Bernshtein I. N., “Analiticheskoe prodolzhenie obobschennykh funktsii po parametru”, Funkts. anal. i ego pril., 6:4 (1972), 26–40 | MR

[2] Björk J.-E., Rings of differential operators, North-Holland, Amsterdam, 1979 | MR | Zbl

[3] Calderón-Moreno F. J., Operadores diferenciales logarítmicos con respecto a un divisor libre, Ph.D. Thesis, Univ. Sevilla, June 1997 | Zbl

[4] Calderón-Moreno F. J., “Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor”, Ann. Sci. École Norm. Super. Sér. 4, 32:5 (1999), 701–714 | MR | Zbl

[5] Calderón-Moreno F. J., Mond D. Q., Narváez-Macarro L., Castro-Jiménez F. J., “Logarithmic cohomology of the complement of a plane curve”, Comment. Math. Helv., 77 (2002), 24–38 | DOI | MR | Zbl

[6] Calderón-Moreno F., Narváez-Macarro L., “Locally quasi-homogeneous free divisors are Koszul free”, Tr. Mat. Inst. Steklova, 81–85 | MR | Zbl

[7] Calderón-Moreno F. J., Narváez-Macarro L., The module $Df^s$ for locally quasi-homogeneous free divisors, Prepubl., Depart. Álg. Univ. Sevilla, N 4. May, 2000

[8] Castro-Jiménez F. J., Mond D., Narváez-Macarro L., “Cohomology of the complement of a free divisor”, Trans. Amer. Math. Soc., 348:8 (1996), 3037–3049 | DOI | MR | Zbl

[9] Castro-Jiménez F. J., Ucha-Enríquez J. M., “Explicit comparison theorems for $\mathcal D$-modules”, J. Symbol. Comput., 32:6 (2001), 677–685 | DOI | MR | Zbl

[10] Grayson D., Stillman M., Macaulay2, A software system for research in algebraic geometry

[11] Kashiwara M., “On the holonomic systems of linear differential equations, II”, Invent. Math., 49:2 (1978), 121–135 | DOI | MR | Zbl

[12] Leykin A., Tsai H., D-module package for Macaulay 2, http://www.math.cornell. edu/~htsai

[13] Mebkhout Z., Le formalisme des six opérations de Grothendieck pour les $\mathcal D_X$-modules cohérents, Travaux en cours, 35, Hermann, Paris, 1989 | MR | Zbl

[14] Oaku T., “Algorithms for the $b$-function and $\mathcal D$-modules associated with a polynomial”, J. Pure and Appl. Alg., 117/118 (1997), 495–518 | DOI | MR | Zbl

[15] Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, 27:2 (1980), 265–291 | MR | Zbl

[16] Takayama N., Kan: a system for computation in algebraic analysis, Source code available for Unix computers from ftp.math.kobe-u.ac.jp, 1991

[17] Torrelli T., Équations fonctionelles pour une fonction dur un espace singulier, Ph.D. Thesis, Univ. Nice-Sophia Antipolis, Nov. 1998 | Zbl

[18] Ucha-Enríquez J. M., Métodos constructivos en álgebras de operadores diferenciales, Tes. Doct., Univ. Sevilla, 1999

[19] Varchenko A. N., “Asimptoticheskaya struktura Khodzha v ischezayuschikh kogomologiyakh”, Izv. AN SSSR. Ser. mat., 45:3 (1981), 540–591 | MR | Zbl