Free Divisors and Duality for $\mathcal D$-Modules
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 97-105
Voir la notice de l'article provenant de la source Math-Net.Ru
The relationship between $\mathcal D$-modules and free divisors was studied
in the general setting by L. Narváez and F. J. Calderón. Using the ideas
of their works, we prove in this article a new duality formula between two
$\mathcal D$-modules associated to a class of free divisors on $\mathbb
C^n$ and give some applications.
@article{TM_2002_238_a5,
author = {F. J. Castro-Jim\'enez and J. M. Ucha},
title = {Free {Divisors} and {Duality} for $\mathcal D${-Modules}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {97--105},
publisher = {mathdoc},
volume = {238},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a5/}
}
TY - JOUR AU - F. J. Castro-Jiménez AU - J. M. Ucha TI - Free Divisors and Duality for $\mathcal D$-Modules JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 97 EP - 105 VL - 238 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_238_a5/ LA - en ID - TM_2002_238_a5 ER -
F. J. Castro-Jiménez; J. M. Ucha. Free Divisors and Duality for $\mathcal D$-Modules. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 97-105. http://geodesic.mathdoc.fr/item/TM_2002_238_a5/