Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_238_a5, author = {F. J. Castro-Jim\'enez and J. M. Ucha}, title = {Free {Divisors} and {Duality} for $\mathcal D${-Modules}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {97--105}, publisher = {mathdoc}, volume = {238}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a5/} }
TY - JOUR AU - F. J. Castro-Jiménez AU - J. M. Ucha TI - Free Divisors and Duality for $\mathcal D$-Modules JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 97 EP - 105 VL - 238 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_238_a5/ LA - en ID - TM_2002_238_a5 ER -
F. J. Castro-Jiménez; J. M. Ucha. Free Divisors and Duality for $\mathcal D$-Modules. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 97-105. http://geodesic.mathdoc.fr/item/TM_2002_238_a5/
[1] Bernshtein I. N., “Analiticheskoe prodolzhenie obobschennykh funktsii po parametru”, Funkts. anal. i ego pril., 6:4 (1972), 26–40 | MR
[2] Björk J.-E., Rings of differential operators, North-Holland, Amsterdam, 1979 | MR | Zbl
[3] Calderón-Moreno F. J., Operadores diferenciales logarítmicos con respecto a un divisor libre, Ph.D. Thesis, Univ. Sevilla, June 1997 | Zbl
[4] Calderón-Moreno F. J., “Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor”, Ann. Sci. École Norm. Super. Sér. 4, 32:5 (1999), 701–714 | MR | Zbl
[5] Calderón-Moreno F. J., Mond D. Q., Narváez-Macarro L., Castro-Jiménez F. J., “Logarithmic cohomology of the complement of a plane curve”, Comment. Math. Helv., 77 (2002), 24–38 | DOI | MR | Zbl
[6] Calderón-Moreno F., Narváez-Macarro L., “Locally quasi-homogeneous free divisors are Koszul free”, Tr. Mat. Inst. Steklova, 81–85 | MR | Zbl
[7] Calderón-Moreno F. J., Narváez-Macarro L., The module $Df^s$ for locally quasi-homogeneous free divisors, Prepubl., Depart. Álg. Univ. Sevilla, N 4. May, 2000
[8] Castro-Jiménez F. J., Mond D., Narváez-Macarro L., “Cohomology of the complement of a free divisor”, Trans. Amer. Math. Soc., 348:8 (1996), 3037–3049 | DOI | MR | Zbl
[9] Castro-Jiménez F. J., Ucha-Enríquez J. M., “Explicit comparison theorems for $\mathcal D$-modules”, J. Symbol. Comput., 32:6 (2001), 677–685 | DOI | MR | Zbl
[10] Grayson D., Stillman M., Macaulay2, A software system for research in algebraic geometry
[11] Kashiwara M., “On the holonomic systems of linear differential equations, II”, Invent. Math., 49:2 (1978), 121–135 | DOI | MR | Zbl
[12] Leykin A., Tsai H., D-module package for Macaulay 2, http://www.math.cornell. edu/~htsai
[13] Mebkhout Z., Le formalisme des six opérations de Grothendieck pour les $\mathcal D_X$-modules cohérents, Travaux en cours, 35, Hermann, Paris, 1989 | MR | Zbl
[14] Oaku T., “Algorithms for the $b$-function and $\mathcal D$-modules associated with a polynomial”, J. Pure and Appl. Alg., 117/118 (1997), 495–518 | DOI | MR | Zbl
[15] Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, 27:2 (1980), 265–291 | MR | Zbl
[16] Takayama N., Kan: a system for computation in algebraic analysis, Source code available for Unix computers from ftp.math.kobe-u.ac.jp, 1991
[17] Torrelli T., Équations fonctionelles pour une fonction dur un espace singulier, Ph.D. Thesis, Univ. Nice-Sophia Antipolis, Nov. 1998 | Zbl
[18] Ucha-Enríquez J. M., Métodos constructivos en álgebras de operadores diferenciales, Tes. Doct., Univ. Sevilla, 1999
[19] Varchenko A. N., “Asimptoticheskaya struktura Khodzha v ischezayuschikh kogomologiyakh”, Izv. AN SSSR. Ser. mat., 45:3 (1981), 540–591 | MR | Zbl