The Riemann--Hilbert Problem on a~Compact Riemannian Surface
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 55-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this brief survey, we present recent results, known and new, on the Riemann–Hilbert problem on a compact Riemannian surface of an arbitrary genus.
@article{TM_2002_238_a1,
     author = {A. A. Bolibrukh},
     title = {The {Riemann--Hilbert} {Problem} on {a~Compact} {Riemannian} {Surface}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {55--69},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a1/}
}
TY  - JOUR
AU  - A. A. Bolibrukh
TI  - The Riemann--Hilbert Problem on a~Compact Riemannian Surface
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 55
EP  - 69
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_238_a1/
LA  - ru
ID  - TM_2002_238_a1
ER  - 
%0 Journal Article
%A A. A. Bolibrukh
%T The Riemann--Hilbert Problem on a~Compact Riemannian Surface
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 55-69
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_238_a1/
%G ru
%F TM_2002_238_a1
A. A. Bolibrukh. The Riemann--Hilbert Problem on a~Compact Riemannian Surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 55-69. http://geodesic.mathdoc.fr/item/TM_2002_238_a1/

[1] Anosov D. V., Bolibruch A. A., The Riemann–Hilbert problem, Aspects Math., 22, Vieweg, Braunschweig, Wiesbaden, 1994 | MR | Zbl

[2] Bolibrukh A. A., 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | MR | Zbl

[3] Bolibrukh A. A., “On sufficient conditions for the existence of a Fuchsian equation with prescribed monodromy”, J. Dyn. and Control Syst., 5:4 (1999), 453–472 | DOI | MR | Zbl

[4] Bolibrukh A. A., Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000

[5] Bolibrukh A. A., “Stabilnye vektornye rassloeniya s logarifmicheskimi svyaznostyami i problema Rimana–Gilberta”, Dokl. RAN, 381:1 (2001), 10–13 | MR

[6] Deligne P., Equations différentielles à points singuliers réguliers, Lect. Notes Math., 163, Springer-Verl., Berlin, 1970 | MR | Zbl

[7] Esnault H., Hertling C., Semistable bundles on curves and reducible representations of the fundamental group, , 2001, 23 Jan arXiv: /math.AG/0101194 | MR

[8] Esnault H., Viehweg E., “Semistable bundles on curves and irreducible representations of the fundamental group”, Contemp. Math., 241 (1999), 129–138 | MR | Zbl

[9] Giorgadze G., On the Riemann–Hilbert problems, , 1998, 7 Apr arXiv: /math.CV/9804035

[10] Gantz C., Steer B., Gauge fixing for logarithmic connections over curves and the Riemann–Hilbert problem, Preprint. Math. Inst. OX1 3LB. Apr., Oxford, 1995 | MR

[11] Gantz C., Steer B., “Gauge fixing for logarithmic connections over curves and the Riemann–Hilbert problem”, J. London Math. Soc. Ser. 2, 59:2 (1999), 479–490 | DOI | MR | Zbl

[12] Gunning R. G., Lectures on Riemann surfaces, Princeton Univ. Press, Princeton, 1966 | MR | Zbl

[13] Kostov V. P., “Fuchsian systems on $\mathbb{CP}^1$ and the Riemann–Hilbert problem”, C. R. Acad. Sci. Paris. Sér. 1, 315:2 (1992), 143–148 | MR | Zbl

[14] Malek S., “Systèmes fuchsiens à monodromie réductible”, C. R. Acad. Sci. Paris. Sér. 1, 332:8 (2001), 691–694 | MR | Zbl

[15] Narasimhan M. S., Seshadri C. S., “Stable and unitary vector bundles on a compact Riemann surface”, Ann. Math. Ser. 2, 82 (1965), 540–567 | DOI | MR | Zbl

[16] Yoshida M., “On the number of apparent singularities of the Riemann–Hilbert problem on Riemann surface”, J. Math. Soc. Japan, 49:1 (1997), 145–159 | DOI | MR | Zbl