The Riemann--Hilbert Problem on a~Compact Riemannian Surface
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 55-69

Voir la notice de l'article provenant de la source Math-Net.Ru

In this brief survey, we present recent results, known and new, on the Riemann–Hilbert problem on a compact Riemannian surface of an arbitrary genus.
@article{TM_2002_238_a1,
     author = {A. A. Bolibrukh},
     title = {The {Riemann--Hilbert} {Problem} on {a~Compact} {Riemannian} {Surface}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {55--69},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a1/}
}
TY  - JOUR
AU  - A. A. Bolibrukh
TI  - The Riemann--Hilbert Problem on a~Compact Riemannian Surface
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 55
EP  - 69
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_238_a1/
LA  - ru
ID  - TM_2002_238_a1
ER  - 
%0 Journal Article
%A A. A. Bolibrukh
%T The Riemann--Hilbert Problem on a~Compact Riemannian Surface
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 55-69
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_238_a1/
%G ru
%F TM_2002_238_a1
A. A. Bolibrukh. The Riemann--Hilbert Problem on a~Compact Riemannian Surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 55-69. http://geodesic.mathdoc.fr/item/TM_2002_238_a1/