The Pricing of an Option That Is a~Combination of Russian and Integral Russian Options
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 279-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ew American option is considered within the classical Black–Scholes model. This option represents a combination of Russian and integral Russian options. The pricing problem for this option is reduced to an optimal stopping problem, which is solved in the case of an infinite time horizon.
@article{TM_2002_237_a17,
     author = {O. A. Glonti},
     title = {The {Pricing} of an {Option} {That} {Is} {a~Combination} of {Russian} and {Integral} {Russian} {Options}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {279--289},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a17/}
}
TY  - JOUR
AU  - O. A. Glonti
TI  - The Pricing of an Option That Is a~Combination of Russian and Integral Russian Options
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 279
EP  - 289
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_237_a17/
LA  - ru
ID  - TM_2002_237_a17
ER  - 
%0 Journal Article
%A O. A. Glonti
%T The Pricing of an Option That Is a~Combination of Russian and Integral Russian Options
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 279-289
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_237_a17/
%G ru
%F TM_2002_237_a17
O. A. Glonti. The Pricing of an Option That Is a~Combination of Russian and Integral Russian Options. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 279-289. http://geodesic.mathdoc.fr/item/TM_2002_237_a17/

[1] Shepp L. A., Shiryaev A. N., “The Russian option: Reduced regret”, Ann. Appl. Probab., 3:3 (1993), 631–640 | DOI | MR | Zbl

[2] Shepp L. A., Shiryaev A. N., “Novyi vzglyad na raschety “Russkogo optsiona””, Teoriya veroyatn. i ee primen., 39:1 (1994), 130–149 | MR

[3] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki. T. 2: Teoriya, Fazis, M., 1998

[4] Shiryaev A. N., Kabanov Yu. M., Kramkov D. O., Melnikov A. V., “K teorii raschetov optsionov Evropeiskogo i Amerikanskogo tipov. II: Nepreryvnoe vremya”, Teoriya veroyatn. i ee primen., 39:1 (1994), 80–129 | MR | Zbl

[5] Anulova S. V., Veretennikov A. Yu., Krylov N. V., Liptser R. Sh., Shiryaev A. N., Stokhasticheskoe ischislenie, Itogi nauki i tekhniki. Sovr. probl. matematiki, 45, VINITI, M., 1989 | MR

[6] Shiryaev A. N., Statisticheskii posledovatelnyi analiz, 2-e izd., Nauka, M., 1976 | MR | Zbl