A Note on Martingale Measures with Bounded Densities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 212-216
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $S$ be a discrete-time martingale with a finite horizon. We show that the set of equivalent martingale measures with bounded densities is dense in the set of equivalent martingale measures with respect to the total variation norm.
@article{TM_2002_237_a10,
author = {M. R\'asonyi},
title = {A~Note on {Martingale} {Measures} with {Bounded} {Densities}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {212--216},
year = {2002},
volume = {237},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a10/}
}
M. Rásonyi. A Note on Martingale Measures with Bounded Densities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 212-216. http://geodesic.mathdoc.fr/item/TM_2002_237_a10/
[1] Dellacherie C., Meyer P. A., Probabilities and potential, North-Holland, Amsterdam, 1978 | MR | Zbl
[2] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stoch. and Stoch. Repts., 29 (1990), 185–201 | MR | Zbl
[3] Hiriart-Urruty J.-B., Lemaréchal C., Convex analysis and minimization algorithms, Pt 1: Fundamentals, Springer-Verl., Berlin, Heidelberg, New York, 1996 | MR
[4] Kabanov Yu. M., Stricker Ch., “On equivalent martingale measures with bounded densities”, Séminaire de probabilités, XXXV, Lect. Notes Math., 1755, eds. J. Azéma et al., Springer-Verl., Berlin, 2001, 139–148 | MR | Zbl