Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 12-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the foundations of stochastic mathematical finance and has three main purposes: (1) To present a self-contained construction of the vector stochastic integral $H\bullet X$ with respect to a $d$-dimensional semimartingale $X=(X_t^1,\dots ,X_t^d)$. This notion is more general than the componentwise stochastic integral $\sum _{i=1}^d H^i\bullet X^i$. (2) To show that vector stochastic integrals are important in mathematical finance. To be more precise, the notion of componentwise stochastic integral is insufficient in the First and Second Fundamental Theorems of Asset Pricing. (3) To prove the Second Fundamental Theorem of Asset Pricing in the general setting, i.e. in the continuous-time case for a general multidimensional semimartingale. The proof is based on the martingale techniques and, in particular, on the properties of the vector stochastic integral.
@article{TM_2002_237_a1,
     author = {A. N. Shiryaev and A. S. Cherny},
     title = {Vector {Stochastic} {Integrals} and the {Fundamental} {Theorems} of {Asset} {Pricing}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {12--56},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a1/}
}
TY  - JOUR
AU  - A. N. Shiryaev
AU  - A. S. Cherny
TI  - Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 12
EP  - 56
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_237_a1/
LA  - ru
ID  - TM_2002_237_a1
ER  - 
%0 Journal Article
%A A. N. Shiryaev
%A A. S. Cherny
%T Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 12-56
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_237_a1/
%G ru
%F TM_2002_237_a1
A. N. Shiryaev; A. S. Cherny. Vector Stochastic Integrals and the Fundamental Theorems of Asset Pricing. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 12-56. http://geodesic.mathdoc.fr/item/TM_2002_237_a1/

[1] Ansel J.-P., Stricker C., “Couverture des actifs contingents et prix maximum”, Ann. Inst. H. Poincaré, 30:2 (1994), 303–315 | MR | Zbl

[2] Bichteler K., “Stochastic integration and $L^p$-theory of semimartingales”, Ann. Probab., 9:1 (1981), 49–89 | DOI | MR | Zbl

[3] Björk T., Di Masi G., Kabanov Yu. M., Runggaldier W., “Towards a general theory of bond markets”, Fin. and Stoch., 2:1 (1997), 141–174 | DOI | Zbl

[4] Chatelain M., Stricker C., “On componentwise and vector stochastic integration”, Math. Fin., 4:1 (1994), 57–65 | DOI | MR | Zbl

[5] Cherny A. S., “Vector stochastic integrals in the first fundamental theorem of asset pricing”, Proc. Workshop on Mathematical Finance (Paris, May 1998), INRIA, Paris, 1998, 149–163

[6] Chou C. S., “Caractérisation d'une classe de semimartingales”, Lect. Notes Math., 721, 1979, 250–252 | MR | Zbl

[7] Chou C. S., Meyer P.-A., Stricker C., “Sur les intégrales stochastiques de processus prévisibles non bornés”, Lect. Notes Math., 784, 1980, 128–139 | MR | Zbl

[8] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stoch. and Stoch. Repts., 29:2 (1990), 185–201 | MR | Zbl

[9] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl

[10] Delbaen F., Schachermayer W., “The fundamental theorem of asset pricing for unbounded stochastic processes”, Math. Ann., 312:2 (1998), 215–260 | DOI | MR

[11] Dellacherie C., Meyer P.-A., Probabilités et potentiel, Hermann, Paris, 1980 | MR | Zbl

[12] Doléans-Dade C., Meyer P.-A., “Intégrales stochastiques par rapport aux martingales locales”, Lect. Notes Math., 124, 1970, 77–107 | MR | Zbl

[13] Émery M., “Une topologie sur l'espace des semimartingales”, Lect. Notes Math., 721, 1979, 260–280 | MR | Zbl

[14] Émery M., “Compensation de processus a variation finie non localement intégrables”, Lect. Notes Math., 784, 1980, 152–160 | MR | Zbl

[15] Galchuk L., “O strukture odnogo klassa martingalov”, Tr. Shkoly-seminara po sluchainym protsessam, Ch. 1 (Druskininkai, 1974), Vilnyus, 1975, 7–32

[16] Goll T., Kallsen J., A complete explicit solution to the log-optimal portfolio problem, Preprint Inst. Math. Stoch., Univ. Freiburg (Germany), 2001 | MR

[17] Harrison J. M., Pliska S. R., “Martingales and stochastic integrals in the theory of continuous trading”, Stoch. Process. and Appl., 11:3 (1981), 215–260 | DOI | MR | Zbl

[18] Itô K., “Stochastic integrals”, Proc. Imp. Acad. Tokyo, 20 (1944), 519–524 | DOI | MR | Zbl

[19] Jacod J., Calcul stochastique et problèmes de martingales, Lect. Notes Math., 714, Springer-Verl., Berlin, 1979 | MR | Zbl

[20] Jacod J., “Intégrales stochastiques par rapport à une semimartingale vectorielle et changement de filtration”, Lect. Notes Math., 784, 1980, 161–172 | MR | Zbl

[21] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, Fizmatlit, M., 1994

[22] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Fin. and Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl

[23] Jarrow R., Madan D., “Characterization of complete markets on a Brownian filtration”, Math. Fin., 1:3 (1991), 31–43 | DOI | MR | Zbl

[24] Kabanov Yu. M., Kramkov D. O., “Otsutstvie arbitrazha i ekvivalentnye martingalnye mery: novoe dokazatelstvo teoremy Kharrisona–Pliski”, Teoriya veroyatn. i ee primen., 39:3 (1994), 635–640 | MR | Zbl

[25] Kabanov Yu. M., “On the FTAP of Kreps–Delbaen–Schachermayer”, Statistics and control of random processes. The Liptser Festschrift, Proc. Steklov Math. Inst. Seminar., World Sci., Singapore, 1997, 191–203 | MR | Zbl

[26] Kabanov Yu. M., Stricker C., “A teacher's note on no-arbitrage criteria”, Lect. Notes Math., 1755, 2000, 149–152 | MR

[27] Kunita H., Watanabe S., “On square integrable martingales”, Nagoya Math. J., 30 (1967), 209–245 | MR | Zbl

[28] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Fizmatlit, M., 1987 | MR

[29] Mémin J., “Espaces de semi martingales et changement de probabilité”, Probab. Theory and Relat. Fields, 52:1 (1980), 9–39 | MR | Zbl

[30] Métivier M., Semimartingales, W. de Gruyter, Berlin, New York, 1992 | MR

[31] Meyer P.-A., “Un cours sur les intégrales stochastiques”, Lect. Notes Math., 511, 1976, 245–400 | MR | Zbl

[32] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1965 | MR

[33] Revuz D., Yor M., Continuous martingales and Brownian motion, Springer-Verl., Berlin, Heidelberg, New York, 1994 | MR | Zbl

[34] Sato K.-I., Lévy processes and infinitely divisible distributions, Cambridge Univ. Press, Cambridge, 1999 | MR

[35] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, T. 1, 2, Fazis, M., 1998

[36] Shiryaev A. N., “On arbitrage and replication for fractal models”, Proc. Workshop on Mathematical Finance (Paris, May 1998), INRIA, Paris, 1998, 1–7 | MR

[37] Soros Dzh., Alkhimiya finansov, Infra-M, M., 1997

[38] Iosida K., Funktsionalnyi analiz, Mir, M., 1965 | MR

[39] Kabanov Yu. M., “Arbitrage theory”, Option pricing, interest rates and risk management, Handbooks in Mathematical Finance, eds. E. Jouini et al., Cambridge Univ. Press, Cambridge, 2001, 3–42 | MR | Zbl