On the 16th~Hilbert Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 519-527.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a polynomial planar vector field of degree $n\geq 3$ with $S$ ($S\geq 2$) invariant nonsingular algebraic curves of degree greater than or equal to two, we proved that the maximal number of algebraic limit cycles is $n-1$. We use the Pontryagin method to analyze the problem of the maximal number of limit cycles for Lienard's equation.
@article{TM_2002_236_a51,
     author = {N. Sadovskaia and R. Ramirez},
     title = {On the {16th~Hilbert} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {519--527},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a51/}
}
TY  - JOUR
AU  - N. Sadovskaia
AU  - R. Ramirez
TI  - On the 16th~Hilbert Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 519
EP  - 527
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a51/
LA  - en
ID  - TM_2002_236_a51
ER  - 
%0 Journal Article
%A N. Sadovskaia
%A R. Ramirez
%T On the 16th~Hilbert Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 519-527
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a51/
%G en
%F TM_2002_236_a51
N. Sadovskaia; R. Ramirez. On the 16th~Hilbert Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 519-527. http://geodesic.mathdoc.fr/item/TM_2002_236_a51/

[1] Bautin N. N., “Otsenka chisla algebraicheskikh predelnykh tsiklov sistemy $\dot x=P(x,y)$, $\dot y=Q(x,y)$ s algebraicheskimi pravymi chastyami”, Dif. uravneniya, 16:2 (1980), 362 | MR | Zbl

[2] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1976 | MR

[3] Darboux M. G., “Recherche de la loi que doi't suive une force centrale pour que la trayectoire quelle determine soit tougours une conique”, C. R. Acad. Sci. Paris, 1877, no. 16

[4] Dolov M. V., Kuzmin R. V., “O predelnykh tsiklakh sistem s zadannym chastnym integralom”, Dif. uravneniya, 30:7 (1994), 1125–1132 | MR | Zbl

[5] Erugin N. P., “Postroenie vsego mnozhestva sistem differentsialnykh uravnenii, imeyuschikh zadannuyu integralnuyu krivuyu”, PMM, 16:6 (1952), 659–670 | MR | Zbl

[6] Galiullin A. S., Mukhametzyanov I. A., Mukharlyamov R. G., Postroenie sistem programmnogo dvizheniya, Nauka, M., 1971 | MR | Zbl

[7] Hilbert D., “Mathematische Probleme”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., Lecture (Second Intern. Congr. Math. Paris, 1900), 1900, 253–297 | Zbl

[8] Hirsh M. J., Smale S., Differential equations, dynamical systems, and linear algebra, Acad. Press, New York, 1974 | MR

[9] Poincaré H., “Sur l'intégration algébrique des équations differentielles”, C. R. Acad. Sci. Paris, 112 (1891), 761–764

[10] Sadovskaia N., Ramirez R. O., “Inverse problems in the theory of the planar vector fields”, Rev. Mat. Iberoamer, 14:3 (1998), 481–515 | MR

[11] Sadovskaia N., Ramirez R. O., Construccion de ecuaciones diferenciales de primer orden en base a integrales dadas, Tech. Rep. MA2-IR-99-00015 (vers. 2), Univ. Politéc. Cataluña, Spain | Zbl

[12] Stoker Dzh., Nelineinye kolebaniya v mekhanicheskikh i elektricheskikh sistemakh, Izd-vo inostr. lit., M., 1952

[13] Sverdlove R., “Inverse problems for dynamical systems”, J. Diff. Equat., 42:1 (1981), 72–105 | DOI | MR | Zbl