Discrete Models of Codimension-Two Singularities of Goursat Flags
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 491-502.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generic germs of Goursat distributions (special subbundles in tangent bundles having the flag of consecutive Lie squares of ranks growing always by 1) were classified a century ago by von Weber; his discrete models are the chained systems that are well known in control theory. Germs of codimension 1, for Goursat distributions of all coranks, were classified by us in 1999. These singularities are simple as well. Singularities of codimension 2 of Goursat flags of arbitrary corank split into two geometrically distinct classes. In this paper we show that one of these classes consists of simple germs, and give a list of discrete models for them. This is in contrast with the fact that in the second class there do exist singularities of modality at least two.
@article{TM_2002_236_a48,
     author = {P. Mormul},
     title = {Discrete {Models} of {Codimension-Two} {Singularities} of {Goursat} {Flags}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {491--502},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a48/}
}
TY  - JOUR
AU  - P. Mormul
TI  - Discrete Models of Codimension-Two Singularities of Goursat Flags
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 491
EP  - 502
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a48/
LA  - en
ID  - TM_2002_236_a48
ER  - 
%0 Journal Article
%A P. Mormul
%T Discrete Models of Codimension-Two Singularities of Goursat Flags
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 491-502
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a48/
%G en
%F TM_2002_236_a48
P. Mormul. Discrete Models of Codimension-Two Singularities of Goursat Flags. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 491-502. http://geodesic.mathdoc.fr/item/TM_2002_236_a48/

[1] Arnold V. I., Mathematical methods of classical mechanics, Springer-Verl., New York, Berlin, 1978 | MR

[2] Bryant R., Hsu L., “Rigidity of integral curves of rank 2 distributions”, Invent. Math., 114 (1993), 435–461 | DOI | MR | Zbl

[3] Cartan E., “Les systèmes de Pfaff à cinq variables et les équations aux derivées partielles du second ordre”, Ann. Ecole Norm., 27 (1910), 109–192 | MR | Zbl

[4] Cartan E., “Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes”, Bull. Soc. Math. France, 42 (1914), 12–48 | MR

[5] Cheaito M., Mormul P., “Rank-2 distributions satisfying the Goursat condition: all their local models in dimension 7 and 8”, ESAIM Contr. Optim. and Calc. Variat., 4 (1999), 137–158 ; http://www.emath.fr/cocv | DOI | MR | Zbl

[6] Cheaito M., Mormul P., Pasillas-Lépine W., Respondek W., “On local classification of Goursat structures”, C. R. Acad. Sci. Paris. Sér. 1, 327 (1998), 503–508 | MR | Zbl

[7] Gaspar M., “Sobre la clasificacion de sistemas de Pfaff en bandera”, Proc. 10th Spanish–Portuguese Conf. Math., Univ. Murcia, Spain, 1985, 67–74 | MR

[8] Gershkovich V. Ya., Vershik A. M., “Otsenka funktsionalnoi razmernosti prostranstva orbit rostkov raspredelenii obschego polozheniya”, Mat. zametki, 44:5 (1988), 596–603 | MR

[9] Giaro A., Kumpera A., Ruiz C., “Sur la lecture correcte d'un résultat d'Elie Cartan”, C. R. Acad. Sci. Paris. Sér. 1, 287 (1978), 241–244 | MR | Zbl

[10] Jacquard B., Le problème de la voiture à deux, trois et quatre remorques, Preprint DMI, ENS, Paris, 1993

[11] Jakubczyk B., Przytycki F., Singularities of $k$-tuples of vector fields, Diss. Math., Warsaw: Inst. Math. Pol. Acad. Sci., 1984, v. 213 | MR

[12] Jean F., “The car with $n$ trailers: characterisation of the singular configurations”, ESAIM Contr. Optim. and Calc. Variat., 1 (1996), 241–266 ; http://www.emath.fr/cocv | DOI | MR | Zbl

[13] Kumpera A., Toulouse lectures: Handwritten notes, Toulouse, 1998

[14] Kumpera A., Ruiz C., “Sur l'équivalence locale des systèmes de Pfaff en drapeau”, Monge–Ampère equations and related topics, Inst. Alta Math., Rome, 1982, 201–248 | MR

[15] Lie S., “Zur analytischen Theorie der Berührungstransformationen”, Gesamm. Abhandl, v. 3, Teubner, Leipzig, 1922, 96–119; v. 3 ; v. 4 | Zbl

[16] Lychagin V. V., “Lokalnaya klassifikatsiya nelineinykh differentsialnykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, UMN, 30:1 (1975), 101–171 | MR | Zbl

[17] Montgomery R., Zhitomirskii M., “Geometric approach to Goursat flags”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 18:4 (2001), 459–493 | DOI | MR | Zbl

[18] Mormul P., “Local classification of rank-2 distributions satisfying the Goursat condition in dimension 9”, Singularités et Géométrie sous-riemannienne, Collection Travaux en cours, 62, eds. P. Orro, F. Pelletier, Hermann, Paris, 2000, 89–119

[19] Mormul P., “Contact hamiltonians distinguishing locally certain Goursat systems”, Poisson geometry, Banach Center Publ., 51, Inst. Math. Pol. Acad. Sci., Warszawa, 2000, 219–230 | MR | Zbl

[20] Mormul P., Goursat distributions with one singular hypersurface—constants important in their Kumpera–Ruiz pseudo-normal forms, Preprint No 185, Labo. Topologie, Univ. Bourgogne, Dijon, 1999, June

[21] Mormul P., “Goursat flags: classification of codimension-one singularities”, J. Dyn. and Contr. Syst., 6 (2000), 311–330 | DOI | MR | Zbl

[22] Mormul P., “Examples of exotic moduli in local classification of Goursat flags”, Univ. Iagellonicae. Acta Math., 38 (2000), 17–28 | MR | Zbl

[23] Mormul P., Real moduli in codimension 2 in local classification of Goursat flags, Preprint 01-13 (51), Inst. Math. Warsaw Univ., 2001 | MR

[24] Mormul P., Simple codimension-two singularities of Goursat flags. I: One flag's member in singular position, Preprint 01-01 (39), Inst. Math. Warsaw Univ., 2001; http://www.mimuw.edu.pl/wydzial/raport_mat.html

[25] Mormul P., “Minimal nilpotent local bases for Goursat distributions in dimensions not exceeding 7”, Singularity theory seminar, 6, Warsaw Univ. Technology, Warszawa, 2001, 44–56

[26] Pasillas-Lépine W., Respondek W., “On the geometry of Goursat structures”, ESAIM Contr. Optim. and Calc. Variat., 6 (2001), 119–181 ; http://www.emath.fr/cocv | DOI | MR | Zbl

[27] Von Weber E., “Zur Invariantentheorie der Systeme Pfaff'scher Gleichungen”, Ber. Ges. Leipzig. Math.-Phys. Cl. L., 50 (1898), 207–229 | Zbl

[28] Zhitomirskii M. Ya., “Normalnye formy rostkov raspredelenii s fiksirovannym otrezkom vektora rosta”, Algebra i analiz, 2:5 (1990), 121–145 | MR