Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 371-377
Voir la notice du chapitre de livre
The theory of two-scale convergence developed in the works of G. Nguetseng, G. Allaire, and V.V. Zhikov is applied to the homogenization of variational problems formulated in terms of measures. A variational problem that describes a nonlinear medium with double porosity is also analyzed.
@article{TM_2002_236_a38,
author = {S. B. Shulga},
title = {Homogenization of {Nonlinear} {Variational} {Problems} by {Means} of {Two-Scale} {Convergence}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {371--377},
year = {2002},
volume = {236},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a38/}
}
S. B. Shulga. Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 371-377. http://geodesic.mathdoc.fr/item/TM_2002_236_a38/
[1] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl
[2] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl
[3] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl