Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 371-377
Voir la notice de l'article provenant de la source Math-Net.Ru
The theory of two-scale convergence developed in the works of G. Nguetseng, G. Allaire, and V.V. Zhikov is applied to the homogenization of variational problems formulated in terms of measures. A variational problem that describes a nonlinear medium with double porosity is also analyzed.
@article{TM_2002_236_a38,
author = {S. B. Shulga},
title = {Homogenization of {Nonlinear} {Variational} {Problems} by {Means} of {Two-Scale} {Convergence}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {371--377},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a38/}
}
TY - JOUR AU - S. B. Shulga TI - Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 371 EP - 377 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a38/ LA - ru ID - TM_2002_236_a38 ER -
S. B. Shulga. Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 371-377. http://geodesic.mathdoc.fr/item/TM_2002_236_a38/