Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a38, author = {S. B. Shulga}, title = {Homogenization of {Nonlinear} {Variational} {Problems} by {Means} of {Two-Scale} {Convergence}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {371--377}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a38/} }
TY - JOUR AU - S. B. Shulga TI - Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 371 EP - 377 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a38/ LA - ru ID - TM_2002_236_a38 ER -
S. B. Shulga. Homogenization of Nonlinear Variational Problems by Means of Two-Scale Convergence. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 371-377. http://geodesic.mathdoc.fr/item/TM_2002_236_a38/
[1] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl
[2] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl
[3] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl