Finite-Dimensional Subalgebras of the Lie Algebra of Vector Fields on the Circle
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 338-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite-dimensional subalgebras of the Lie algebra $\mathrm {Vect}(S^1)$ of smooth tangent vector fields on the circle are considered that consist of analytic vector fields. It is proved that (up to an isomorphism) there are only three such subalgebras: a one-dimensional subalgebra, a two-dimensional noncommutative subalgebra, and a three-dimensional subalgebra isomorphic to $\mathrm {sl}_2(\mathbb R)$.
@article{TM_2002_236_a34,
     author = {M. S. Strigunova},
     title = {Finite-Dimensional {Subalgebras} of the {Lie} {Algebra} of {Vector} {Fields} on the {Circle}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {338--342},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a34/}
}
TY  - JOUR
AU  - M. S. Strigunova
TI  - Finite-Dimensional Subalgebras of the Lie Algebra of Vector Fields on the Circle
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 338
EP  - 342
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a34/
LA  - ru
ID  - TM_2002_236_a34
ER  - 
%0 Journal Article
%A M. S. Strigunova
%T Finite-Dimensional Subalgebras of the Lie Algebra of Vector Fields on the Circle
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 338-342
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a34/
%G ru
%F TM_2002_236_a34
M. S. Strigunova. Finite-Dimensional Subalgebras of the Lie Algebra of Vector Fields on the Circle. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 338-342. http://geodesic.mathdoc.fr/item/TM_2002_236_a34/

[1] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[2] Zhelobenko D. P., Shtern A. I., Predstavleniya grupp Li, Nauka, M., 1983 | MR

[3] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | Zbl

[4] Pressli A., Sigal G., Gruppy petel, Mir, M., 1990 | MR