On Jost-Type Solutions to Quasilinear Equations with Power Nonlinearity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 332-337
Voir la notice du chapitre de livre
By a variant of the WKB method, Jost-type solutions are constructed for second-order quasilinear ordinary differential equations with power nonlinearity. By an example of the second Painlevé equation, it is demonstrated that the existence conditions obtained for the above solutions are sharp in a certain sense.
@article{TM_2002_236_a33,
author = {S. A. Stepin},
title = {On {Jost-Type} {Solutions} to {Quasilinear} {Equations} with {Power} {Nonlinearity}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {332--337},
year = {2002},
volume = {236},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a33/}
}
S. A. Stepin. On Jost-Type Solutions to Quasilinear Equations with Power Nonlinearity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 332-337. http://geodesic.mathdoc.fr/item/TM_2002_236_a33/
[1] Kiguradze I. T., Chanturiya T. A., Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | Zbl
[2] de Alfaro V., Redzhe T., Potentsialnoe rasseyanie, Mir, M., 1966 | Zbl
[3] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl
[4] Ains E. L., Obyknovennye differentsialnye uravneniya, GNTI Ukr., Kharkov, 1939
[5] Kapaev A. A., “Asimptoticheskie formuly dlya funktsii Penleve vtorogo roda”, TMF, 77:3 (1988), 323–332 | MR | Zbl