On Jost-Type Solutions to Quasilinear Equations with Power Nonlinearity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 332-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

By a variant of the WKB method, Jost-type solutions are constructed for second-order quasilinear ordinary differential equations with power nonlinearity. By an example of the second Painlevé equation, it is demonstrated that the existence conditions obtained for the above solutions are sharp in a certain sense.
@article{TM_2002_236_a33,
     author = {S. A. Stepin},
     title = {On {Jost-Type} {Solutions} to {Quasilinear} {Equations} with {Power} {Nonlinearity}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {332--337},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a33/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - On Jost-Type Solutions to Quasilinear Equations with Power Nonlinearity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 332
EP  - 337
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a33/
LA  - ru
ID  - TM_2002_236_a33
ER  - 
%0 Journal Article
%A S. A. Stepin
%T On Jost-Type Solutions to Quasilinear Equations with Power Nonlinearity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 332-337
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a33/
%G ru
%F TM_2002_236_a33
S. A. Stepin. On Jost-Type Solutions to Quasilinear Equations with Power Nonlinearity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 332-337. http://geodesic.mathdoc.fr/item/TM_2002_236_a33/

[1] Kiguradze I. T., Chanturiya T. A., Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | Zbl

[2] de Alfaro V., Redzhe T., Potentsialnoe rasseyanie, Mir, M., 1966 | Zbl

[3] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[4] Ains E. L., Obyknovennye differentsialnye uravneniya, GNTI Ukr., Kharkov, 1939

[5] Kapaev A. A., “Asimptoticheskie formuly dlya funktsii Penleve vtorogo roda”, TMF, 77:3 (1988), 323–332 | MR | Zbl