Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a31, author = {I. V. Skrypnik and G. Gaevsi}, title = {On the {Uniqueness} {Problem} for {Nonlinear} {Elliptic} and {Parabolic} {Equations}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {318--327}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a31/} }
TY - JOUR AU - I. V. Skrypnik AU - G. Gaevsi TI - On the Uniqueness Problem for Nonlinear Elliptic and Parabolic Equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 318 EP - 327 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a31/ LA - ru ID - TM_2002_236_a31 ER -
I. V. Skrypnik; G. Gaevsi. On the Uniqueness Problem for Nonlinear Elliptic and Parabolic Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 318-327. http://geodesic.mathdoc.fr/item/TM_2002_236_a31/
[4] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Ztsch., 183 (1981), 311–341 | MR
[5] Benilan Ph., Wittbold P., “On mild and weak solutions of elliptic-parabolic problems”, Adv. Diff. Equat., 1 (1996), 1053–1076 | MR
[6] Gajewski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akad. Verl., Berlin, 1974 | MR
[7] Gajewski H., “On a variant of monotonicity and its application to differential equations”, Nonlin. Anal. TMA, 22 (1994), 73–80 | DOI | MR | Zbl
[8] Gajewski H., Gröger K., “Reaction-diffusion processes of electrically charged species”, Math. Nachr., 177 (1996), 109–130 | DOI | MR | Zbl
[9] Gajewski H., Zacharias K., “Global behavior of reaction diffusion system modelling chemotaxis”, Math. Nachr., 195 (1998), 77–114 | MR | Zbl
[10] Gajewski H., Skrypnik I. V., To the uniquness problem for nonlinear elliptic equations, Preprint No 527, WIAS, Berlin, 1999 | MR
[11] Moser J., “A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Commun. Pure and Appl. Math., 13 (1960), 457–468 | DOI | MR | Zbl
[12] Otto F., “$L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations”, C. R. Acad. Sci. Paris. Sér. 1, 318 (1995), 1005–1010 | MR
[13] Skrypnik I. V., Methods of analysis of nonlinear elliptic boundary value problems, Transl. Math. Monogr., 139, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl