A Saddle Point in a Differential Game on an Unbounded Time Interval
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 230-233
Cet article a éte moissonné depuis la source Math-Net.Ru
An example of a positional differential game with integral payoff on a half-line is considered. The existence of a saddle point of the game is proved. The value function and optimal strategies are presented.
@article{TM_2002_236_a24,
author = {N. B. Melnikov},
title = {A~Saddle {Point} in {a~Differential} {Game} on an {Unbounded} {Time} {Interval}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {230--233},
year = {2002},
volume = {236},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a24/}
}
N. B. Melnikov. A Saddle Point in a Differential Game on an Unbounded Time Interval. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 230-233. http://geodesic.mathdoc.fr/item/TM_2002_236_a24/
[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1986 | MR | Zbl
[3] Zelikin M. I., Melnikov N. B., Khildebrand R., “Topologicheskaya struktura fazovogo portreta tipichnogo sloya optimalnogo sinteza dlya zadach s nakopleniem pereklyuchenii”, Tr. MIAN, 233, 2001, 125–152 | MR | Zbl