A~Saddle Point in a~Differential Game on an Unbounded Time Interval
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 230-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

An example of a positional differential game with integral payoff on a half-line is considered. The existence of a saddle point of the game is proved. The value function and optimal strategies are presented.
@article{TM_2002_236_a24,
     author = {N. B. Melnikov},
     title = {A~Saddle {Point} in {a~Differential} {Game} on an {Unbounded} {Time} {Interval}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {230--233},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a24/}
}
TY  - JOUR
AU  - N. B. Melnikov
TI  - A~Saddle Point in a~Differential Game on an Unbounded Time Interval
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 230
EP  - 233
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a24/
LA  - ru
ID  - TM_2002_236_a24
ER  - 
%0 Journal Article
%A N. B. Melnikov
%T A~Saddle Point in a~Differential Game on an Unbounded Time Interval
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 230-233
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a24/
%G ru
%F TM_2002_236_a24
N. B. Melnikov. A~Saddle Point in a~Differential Game on an Unbounded Time Interval. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 230-233. http://geodesic.mathdoc.fr/item/TM_2002_236_a24/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1986 | MR | Zbl

[3] Zelikin M. I., Melnikov N. B., Khildebrand R., “Topologicheskaya struktura fazovogo portreta tipichnogo sloya optimalnogo sinteza dlya zadach s nakopleniem pereklyuchenii”, Tr. MIAN, 233, 2001, 125–152 | MR | Zbl