Doubling Operations and Monodromy of Generalized Knizhnik--Zamolodchikov Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 218-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Knizhnik–Zamolodchikov (KZ) equations associated to root systems of $A$ and $B$ types are considered whose coefficients belong to the algebras of chord diagrams and symmetric chord diagrams, respectively. Explicit formulas for the monodromy of these equations are derived with the use of doubling operations in the algebras of chord diagrams. Reductions of the KZ equations with matrix coefficients to Schlesinger deformations are considered. The simplest solutions to the Schlesinger equations under such reductions are found.
@article{TM_2002_236_a22,
     author = {V. P. Leksin},
     title = {Doubling {Operations} and {Monodromy} of {Generalized} {Knizhnik--Zamolodchikov} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {218--225},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a22/}
}
TY  - JOUR
AU  - V. P. Leksin
TI  - Doubling Operations and Monodromy of Generalized Knizhnik--Zamolodchikov Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 218
EP  - 225
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a22/
LA  - ru
ID  - TM_2002_236_a22
ER  - 
%0 Journal Article
%A V. P. Leksin
%T Doubling Operations and Monodromy of Generalized Knizhnik--Zamolodchikov Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 218-225
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a22/
%G ru
%F TM_2002_236_a22
V. P. Leksin. Doubling Operations and Monodromy of Generalized Knizhnik--Zamolodchikov Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 218-225. http://geodesic.mathdoc.fr/item/TM_2002_236_a22/

[1] Bolibruch A. A., “On isomonodromic deformations of Fuchsian systems”, J. Dyn. and Contr. Syst., 3:4 (1997), 589–604 | MR | Zbl

[2] Cherednik I. V., “Monodromy representations for generalized Knizhnik–Zamolodchikov equations and Hecke algebras”, Publ. RIMS. Kyoto Univ., 27 (1991), 711–726 | DOI | MR | Zbl

[3] De Concini C., Procesi C., “Hyperplane arrangements and holonomy equations”, Sel. Math. New Ser., 1:3 (1995), 495–535 | DOI | MR | Zbl

[4] Drinfeld V. G., “O kvazitreugolnykh kvazikhopfovykh algebrakh i gruppe, svyazannoi s $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$”, Algebra i analiz, 2:4 (1990), 149–181 | MR

[5] Kohno T., “Série de Poincaré–Koszul associée aux groupes de tresses pures”, Invent. Math., 82 (1985), 57–75 | DOI | MR | Zbl

[6] Frölich J., King C., “Chern–Simons theory and knot theory”, Commun. Math. Phys., 126 (1989), 167–199 | DOI | MR

[7] Takano K., “A reduction theorem for a linear Pfaffian system with regular singular points”, Arch. Math., 31 (1978/79), 310–316 | DOI | MR | Zbl

[8] Knizhnik V. G., Zamolodchikov A. B., “Current algebra and Wess–Zumino models in two dimensions”, Nucl. Phys. B, 247:1 (1984), 83–103 | DOI | MR | Zbl

[9] Piunikhin S., “Combinatorial expression for universal Vassiliev link invariant”, Commun. Math. Phys., 168 (1995), 1–22 | DOI | MR | Zbl

[10] Golubeva V., Leksin V., “On two types of representations of the braid group associated with the Knizhnik–Zamolodchikov equation of the $B_n$ type”, J. Dyn. and Contr. Syst., 5:4 (1999), 565–596 | DOI | MR | Zbl

[11] Bar-Natan D., “Non-associative tangles”, Geometric topology (Athens, GA, 1993), Amer. Math. Soc., Providence, RI, 1997, 139–183 | MR | Zbl

[12] Le T. Q. T., Murakami J., “Representation of the category of tangles by Kontsevich's iterated integral”, Commun. Math. Phys., 168:3 (1995), 535–562 | DOI | MR | Zbl

[13] Le T. Q. T., Murakami J., “The universal Vassiliev–Kontsevich invariant for framed oriented links”, Compos. Math., 102 (1996), 41–64 | MR | Zbl

[14] Kassel C., Quantum groups, Grad. Texts Math., 155, Springer, New York, 1995 | MR | Zbl

[15] Matsuo A., “Integrable connection related to zonal spherical functions”, Invent. Math., 110 (1992), 95–121 | DOI | MR | Zbl

[16] Cherednik I., “Integration of quantum many-body problems by affine Knizhnik–Zamolodchikov equations”, Adv. Math., 106:1 (1994), 65–95 | DOI | MR | Zbl

[17] Kontsevich M., “Vassiliev's knot invariants”, Adv. Sov. Math., 16 (1993), 137–150 | MR | Zbl

[18] Makanin G. S., “Ob odnom analoge teoremy Aleksandera–Markova”, Izv. AN SSSR. Ser. mat., 53 (1989), 200–210 | MR

[19] Chen K.-T., “Iterated path integrals”, Bull. Amer. Math. Soc., 83 (1977), 831–879 | DOI | MR | Zbl

[20] Lexin V., “Monodromy for KZ equations of the $B_n$-type and accompanying algebraic structures”, Funct. Diff. Equat., 8:3/4 (2001), 335–344 | MR | Zbl

[21] Leksin V. P., “Sootnosheniya v algebre golonomii mnogoobraziya i teorema Khopfa o $H_2(\pi_1(M))$”, Algebraicheskie voprosy analiza i topologii, VGU, Voronezh, 1990, 130–136 | MR