Flows on Closed Surfaces and Related Geometrical Questions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 20-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

When studying flows (continuous one-parameter groups of transformations) on a surface $M$ (a closed two-dimensional manifold, which in our case is assumed to be different from the sphere and the projective plane), one naturally faces several geometrical questions related to the behavior of trajectories lifted to the universal covering plane $\widetilde {M}$ (for example, the questions of whether the lifted trajectory goes to infinity and if it has a certain asymptotic direction at infinity). The same questions can be posed not only for the flow trajectories but also for leaves of one-dimensional foliations and, in general, for non-self-intersecting (semi-)infinite curves. The properties of curves lifted to $\widetilde M$ that we consider here are such that, if two such curves $\widetilde L$ and $\widetilde L'$ are situated at a finite Frechét distance from each other (in this case, we say that the original curves $L$ and $L'$ are $F$-equivalent on $M$), then these properties of the above curves are identical. Certain (a few) results relate to arbitrary non-self-intersecting $L$; other results only relate to flow trajectories under certain additional constraints (that are usually imposed on the set of equilibrium states). The results of the latter type (which do not hold for arbitrary non-self-intersecting curves $L$) imply that, in general, arbitrary $L$ are not $F$-equivalent to the trajectories of such flows. In this relation, nonorientable foliations occupy a kind of intermediate position.
@article{TM_2002_236_a2,
     author = {D. V. Anosov},
     title = {Flows on {Closed} {Surfaces} and {Related} {Geometrical} {Questions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {20--26},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a2/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - Flows on Closed Surfaces and Related Geometrical Questions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 20
EP  - 26
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a2/
LA  - ru
ID  - TM_2002_236_a2
ER  - 
%0 Journal Article
%A D. V. Anosov
%T Flows on Closed Surfaces and Related Geometrical Questions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 20-26
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a2/
%G ru
%F TM_2002_236_a2
D. V. Anosov. Flows on Closed Surfaces and Related Geometrical Questions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 20-26. http://geodesic.mathdoc.fr/item/TM_2002_236_a2/

[1] Weil A., “On systems of curves on a ring-shaped surface”, J. Indian Math. Soc., 19:5 (1931), 109–112 ; 6, 113–114 | Zbl | Zbl

[2] Weil A., “Les familles de courbes sur le tore”, Mat. sb., 1:5 (1936), 779–781 | Zbl

[3] Pupko V. I., “O nesamoperesekayuschikhsya krivykh na zamknutykh poverkhnostyakh”, DAN SSSR, 177:2 (1967), 272–274 | MR | Zbl

[4] Markley N. G., “The Poincaré–Bendixson theorem for the Klein bottle”, Trans. Amer. Math. Soc., 135 (1969), 159–165 | DOI | MR | Zbl

[5] Anosov D. V., “Kak mogut ukhodit v beskonechnost krivye na universalnoi nakryvayuschei ploskosti, nakryvayuschie nesamoperesekayuschiesya krivye na zamknutoi poverkhnosti”, Statisticheskaya mekhanika i teoriya dinamicheskikh sistem, K 80-letiyu akad. N. N. Bogolyubova, Tr. MIAN, 191, Nauka, M., 1989, 34–44 | MR

[6] Anosov D. V., “Potoki na poverkhnostyakh”, Topologiya i ee prilozheniya, Tr. Mezhdunar. topologicheskoi konf. (Baku, 1987), Tr. MIAN, 193, Nauka, M., 1992, 10–14 | MR

[7] Anosov D. V., “Flows on closed surfaces and behavior of trajectories lifted to the universal covering plane”, J. Dyn. and Contr. Syst., 1:1 (1995), 125–138 | DOI | MR | Zbl

[8] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, I”, Izv. AN SSSR. Ser. mat., 51:1 (1987), 16–43 | MR | Zbl

[9] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, II”, Izv. AN SSSR. Ser. mat., 52:3 (1988), 451–478 | MR | Zbl

[10] Anosov D. V., “O beskonechnykh krivykh na tore i zamknutykh poverkhnostyakh otritsatelnoi eilerovoi kharakteristiki”, Optimizatsiya i differentsialnye igry, Tr. MIAN, 185, Nauka, M., 1988, 30–53 | MR

[11] Anosov D. V., “O beskonechnykh krivykh na butylke Kleina”, Mat. sb., 180:1 (1989), 39–56 | MR | Zbl

[12] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, III”, Izv. RAN. Ser. mat., 59:2 (1995), 63–96 | MR | Zbl

[13] Anosov D. V., “O pod'emakh na ploskost polusloev sloenii na tore s konechnym chislom osobennostei”, Algebra, topologiya i differentsialnye uravneniya, Sb. k 90-letiyu so dnya rozhdeniya L. S. Pontryagina, Tr. MIAN, 224, Nauka, M., 1999, 28–55 | MR

[14] Aranson S. Kh., Grines V. Z., “Potoki na dvumernykh mnogoobraziyakh”, Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napravleniya, VINITI, M., 1985, 151–242 | MR

[15] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya potokov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 41:1 (1986), 149–169 | MR | Zbl

[16] Aranson S. Kh., Grines V. Z., Zhuzhoma E. V., “O geometrii i topologii potokov i sloenii na poverkhnostyakh i probleme Anosova”, Mat. sb., 186:8 (1995), 25–66 | MR | Zbl

[17] Aranson S. Kh., Belitsky G. R., Zhuzhoma E. V., Introduction to the qualitative theory of dynamical systems on surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[18] Nikolaev I., Zhuzhoma E., Flows on 2-dimensional manifolds. An overview, Lect. Notes Math., 1705, Springer-Verl., Berlin etc., 1999 | MR | Zbl

[19] Glutsyuk A. A., “Predelnye mnozhestva na beskonechnosti podnyatii na ploskost nesamoperesekayuschikhsya krivykh na tore”, Mat. zametki, 64:5 (1998), 667–679 | MR | Zbl

[20] Aranson S. Kh., Zhuzhoma E. V., “O svoistvakh absolyuta, vliyayuschikh na gladkost potokov na zamknutykh poverkhnostyakh”, Mat. zametki, 68:6 (2000), 819–829 | MR | Zbl