Singularities of Limiting Directions of Generic Higher Order Implicit ODEs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 134-141
Voir la notice de l'article provenant de la source Math-Net.Ru
An implicit differential equation of order $n$ is defined as a zero level of a smooth function on the $(n+2)$-dimensional space with a two-dimensional distribution which is the result of natural Goursat prolongation procedure from a standard contact structure in the space of directions on the plane. The solution of this equation is an immersed curve which lies in this level and is tangent to this distribution. Generic metamorphoses of cones of possible directions on the plane of all solutions are classified. This classification is closely related to the classification of generic singularities of first-order implicit differential equations on the plane and to the classification of generic singularities of limiting direction fields of dynamic inequalities on surfaces.
@article{TM_2002_236_a13,
author = {A. A. Davydov},
title = {Singularities of {Limiting} {Directions} of {Generic} {Higher} {Order} {Implicit} {ODEs}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {134--141},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a13/}
}
TY - JOUR AU - A. A. Davydov TI - Singularities of Limiting Directions of Generic Higher Order Implicit ODEs JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 134 EP - 141 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a13/ LA - ru ID - TM_2002_236_a13 ER -
A. A. Davydov. Singularities of Limiting Directions of Generic Higher Order Implicit ODEs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 134-141. http://geodesic.mathdoc.fr/item/TM_2002_236_a13/