Singularities of Limiting Directions of Generic Higher Order Implicit ODEs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 134-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

An implicit differential equation of order $n$ is defined as a zero level of a smooth function on the $(n+2)$-dimensional space with a two-dimensional distribution which is the result of natural Goursat prolongation procedure from a standard contact structure in the space of directions on the plane. The solution of this equation is an immersed curve which lies in this level and is tangent to this distribution. Generic metamorphoses of cones of possible directions on the plane of all solutions are classified. This classification is closely related to the classification of generic singularities of first-order implicit differential equations on the plane and to the classification of generic singularities of limiting direction fields of dynamic inequalities on surfaces.
@article{TM_2002_236_a13,
     author = {A. A. Davydov},
     title = {Singularities of {Limiting} {Directions} of {Generic} {Higher} {Order} {Implicit} {ODEs}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {134--141},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a13/}
}
TY  - JOUR
AU  - A. A. Davydov
TI  - Singularities of Limiting Directions of Generic Higher Order Implicit ODEs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 134
EP  - 141
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a13/
LA  - ru
ID  - TM_2002_236_a13
ER  - 
%0 Journal Article
%A A. A. Davydov
%T Singularities of Limiting Directions of Generic Higher Order Implicit ODEs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 134-141
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a13/
%G ru
%F TM_2002_236_a13
A. A. Davydov. Singularities of Limiting Directions of Generic Higher Order Implicit ODEs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 134-141. http://geodesic.mathdoc.fr/item/TM_2002_236_a13/

[1] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napravleniya, 1, VINITI, M., 1985, 7–149 | MR

[2] Arnold V. I., “Kontaktnaya struktura, relaksatsionnye kolebaniya i osobye tochki neyavnykh differentsialnykh uravnenii”, Geometriya i teoriya osobennostei v nelineinykh uravneniyakh, Novoe v globalnom analize, 7, Izd-vo VGU, Voronezh, 1987, 3–8 | MR

[3] Bruce J. W., “A note on first order differential equations of degree greater than one and wave front evolution”, Bull. London Math. Soc., 16 (1984), 139–144 | DOI | MR | Zbl

[4] Cibrario M., “Sulla riduzione a forma canonica delle equazioni lineari alle derivate parziali di secondo ordine di tipo misto”, Rend. Ist. Lombardo. Ser. 2, 65 (1932), 889–906 | Zbl

[5] Davydov A. A., “Normalnaya forma differentsialnogo uravneniya, ne razreshennogo otnositelno proizvodnoi v okrestnosti ego osoboi tochki”, Funkts. analiz i ego pril., 19:2 (1985), 1–10 | MR | Zbl

[6] Davydov A. A., Qualitative theory of control systems, Transl. Math. Monogr., 141, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[7] Davydov A. A., “Lokalnaya upravlyaemost tipichnykh dinamicheskikh neravenstv na poverkhnostyakh”, Tr. MIAN, 209, 1995, 84–123 | MR | Zbl

[8] Davydov A. A., Rosales-Gonsales E., “Polnaya klassifikatsiya tipichnykh lineinykh differentsialnykh uravnenii vtorogo poryadka s chastnymi proizvodnymi na ploskosti”, Dokl. RAN, 350:2 (1996), 151–154 | MR | Zbl

[9] Davydov A. A., Ortiz-Bobadilla L., “Smooth normal forms of folded elementary singular points”, J. Dyn. and Contr. Syst., 1 (1995), 463–482 | DOI | MR | Zbl

[10] Goryunov V. V., “Projection of generic surfaces with boundaries”, Adv. Sov. Math., 1 (1990), 157–200 | MR | Zbl

[11] Kossowski M., “Fiber completions, contact singularities and single valued solutions for $C^\infty$-second order ODE”, Canad. J. Math., 48:4 (1996), 849–870 | MR | Zbl

[12] Kuz'min A. G., Nonclassical equations of mixed type and their applications to gas dynamics, Intern. Ser. Numer. Math., 109, Birkhäuser, Basel, 1992 | MR | Zbl

[13] LeMasurier M., Singularities of implicit second order differential equations, PhD Thesis, Univ. Georgia, 1998

[14] Montgomery R., Zhitomirskii M., “Geometric approach to Goursat flags”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 18:4 (2001), 459–493 | DOI | MR | Zbl

[15] Mormul P., “Classification of codimension-one singularities”, J. Dyn. and Contr. Syst., 6:3 (2000), 311–330 | DOI | MR | Zbl