Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 103-119
Voir la notice de l'article provenant de la source Math-Net.Ru
A survey of author's results related to the problems of existence of continuous invariants (moduli) of $\Omega$-conjugacy of multidimensional diffeomorphisms with homoclinic tangencies is presented. The problem of bifurcations of periodic orbits is considered in the case of four-dimensional diffeomorphisms with a nontransversal homoclinic orbit to a fixed point of saddle–focus type.
@article{TM_2002_236_a11,
author = {V. S. Gonchenko},
title = {Homoclinic {Tangencies,} $\Omega${-Moduli,} and {Bifurcations}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {103--119},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a11/}
}
V. S. Gonchenko. Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 103-119. http://geodesic.mathdoc.fr/item/TM_2002_236_a11/