Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 103-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

A survey of author's results related to the problems of existence of continuous invariants (moduli) of $\Omega$-conjugacy of multidimensional diffeomorphisms with homoclinic tangencies is presented. The problem of bifurcations of periodic orbits is considered in the case of four-dimensional diffeomorphisms with a nontransversal homoclinic orbit to a fixed point of saddle–focus type.
@article{TM_2002_236_a11,
     author = {V. S. Gonchenko},
     title = {Homoclinic {Tangencies,} $\Omega${-Moduli,} and {Bifurcations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {103--119},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a11/}
}
TY  - JOUR
AU  - V. S. Gonchenko
TI  - Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 103
EP  - 119
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a11/
LA  - ru
ID  - TM_2002_236_a11
ER  - 
%0 Journal Article
%A V. S. Gonchenko
%T Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 103-119
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a11/
%G ru
%F TM_2002_236_a11
V. S. Gonchenko. Homoclinic Tangencies, $\Omega$-Moduli, and Bifurcations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 103-119. http://geodesic.mathdoc.fr/item/TM_2002_236_a11/

[1] Palis J., “A differentiable invariant of topological conjugacies and moduli of stability”, Asterisque, 51, 1978, 335–346 | MR | Zbl

[2] de Melo W., van Strien S. J., “Diffeomorphisms on surfaces with a finite number of moduli”, Ergod. Th. and Dyn. Syst., 7 (1987), 415–462 | MR | Zbl

[3] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi, I, II”, Mat. sb., 88:4 (1972), 475–492 ; 90:1 (1973), 139–157 | MR | Zbl | MR

[4] Shilnikov L. P., “Ob odnom sluchae suschestvovaniya schetnogo mnozhestva periodicheskikh dvizhenii”, DAN SSSR, 160:3 (1965), 558–561

[5] Gonchenko S. V., “Moduli sistem s negrubymi gomoklinicheskimi traektoriyami (sluchai diffeomorfizmov i vektornykh polei)”, Metody kachestvennoi teorii i teorii bifurkatsii, Mezhvuz. tematich. sb. nauch. tr., Gork. gos. un-t, Gorkii, 1989, 34–49 | MR

[6] Gonchenko S. V., Shilnikov L. P., “Invarianty $\Omega$-sopryazhennosti diffeomorfizmov s negruboi gomoklinicheskoi traektoriei”, Ukr. mat. zhurn., 42:2 (1990), 153–159 | MR | Zbl

[7] Gonchenko S. V., Shilnikov L. P., “O modulyakh sistem s negruboi gomoklinicheskoi krivoi Puankare”, Izv. RAN. Ser. mat., 56:6 (1992), 1165–1196

[8] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “O modelyakh s negruboi gomoklinicheskoi krivoi Puankare”, DAN SSSR, 320:2 (1991), 269–272 | MR | Zbl

[9] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Dinamicheskie yavleniya v mnogomernykh sistemakh s negruboi gomoklinicheskoi krivoi Puankare”, Dokl. RAN, 330:2 (1993), 144–147 | MR | Zbl

[10] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits”, Chaos, 6:1 (1996), 15–31 | DOI | MR | Zbl

[11] Turaev D. V., “On dimension of non-local bifurcational problems”, Intern. J. Bifurcation and Chaos, 6:5 (1996), 919–948 | DOI | MR | Zbl

[12] Gonchenko S. V., Shilnikov L. P., “O dinamicheskikh sistemakh s negrubymi gomoklinicheskimi krivymi”, DAN SSSR, 286:5 (1986), 1049–1053 | MR | Zbl

[13] Gonchenko S. V., “Dynamics and moduli of $\Omega$-conjugacy of $4D$-diffeomorphisms with a structurally unstable homoclinic orbit to a saddle-focus fixed point”, Methods of qualitative theory of differential equations and related topics, AMS Transl. Ser. 2, 200, Amer. Math. Soc., Providence, RI, 2000, 107–134 | MR | Zbl

[14] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “On models with nonrough Poincare homoclinic curves”, Physica D., 62:1–4 (1993), 1–14 | DOI | MR | Zbl

[15] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Gomoklinicheskie kasaniya proizvolnogo poryadka v oblastyakh Nyukhausa”, Tr. Mezhdunar. konf., posv. 90-letiyu L. S. Pontryagina. Dinamicheskie sistemy, Itogi nauki i tekhniki. Sovr. matematika i ee prilozh.: Tematich. obzory, 6, VINITI, M., 1999, 69–128 | MR

[16] Tedeshini-Lalli L., Yorke J. A., “How often do simple dynamical processes have infinitely many coexisting sinks?”, Communs. Math. Phys., 106 (1995), 635–657 | DOI | MR

[17] Gonchenko S. V., Sten'kin O. V., Turaev D. V., “Complexity of homoclinic bifurcations and $\Omega$-moduli”, Intern. J. Bifurcation and Chaos, 6:6 (1996), 969–989 | DOI | MR | Zbl

[18] Gonchenko S. V., Shilnikov L. P., “O dvumernykh analiticheskikh sokhranyayuschikh ploschad diffeomorfizmakh so schetnym mnozhestvom ellipticheskikh ustoichivykh periodicheskikh tochek”, Regulyarnaya i khaoticheskaya dinamika, 2:3/4 (1997), 106–122 | MR

[19] Gonchenko S. V., Shilnikov L. P., “On two-dimensional area-preserving diffeomorphisms with infinitely many elliptic islands”, J. Stat. Phys., 101:1/2 (2000), 321–356 | DOI | MR | Zbl

[20] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “Elliptic periodic orbits near a homoclinic tangency in four-dimensional symplectic maps and Hamiltonian systems with three degrees of freedom”, Regular and Chaotic Dynamics, 3:4 (1998), 3–26 | DOI | MR | Zbl

[21] Gonchenko S. V., Gonchenko V. S., On Andronov–Hopf bifurcations of two-dimensional diffeomorphisms with homoclinic tangencies, Preprint No 556, WIAS, Berlin, 2000 | MR

[22] Stenkin O. V., Shilnikov L. P., “O bifurkatsiyakh periodicheskikh traektorii v okrestnosti negruboi gomoklinicheskoi krivoi”, Dif. uravneniya, 33:3 (1997), 377–384 | MR

[23] Alekseeva S. A., Shilnikov L. P., “O bifurkatsiyakh periodicheskikh dvizhenii v sistemakh s gomoklinicheskoi petlei sedlo-fokusa”, Dif. uravneniya, 33:4 (1997), 440–447 | MR | Zbl

[24] Alekseeva S. A., Shilnikov L. P., “On cusp-bifurcations of periodic orbits in systems with a saddle-focus homoclinic curve”, Methods of qualitative theory of differential equations and related topics, AMS Transl. Ser. 2, 200, Amer. Math. Soc., Providence, RI, 2000, 14–28 | MR

[25] Shilnikov A. L., Shilnikov L. P., Turaev D. V., “Normal forms and Lorenz attractors”, Intern. J. Bifurcation and Chaos, 1:4 (1994), 1123–1139 | MR

[26] Gonchenko S. V., “Moduli $\Omega$-sopryazhennosti dvumernykh diffeomorfizmov s negrubym geteroklinicheskim konturom”, Mat. sb., 187:9 (1996), 3–24 | MR | Zbl