On Bifurcations of Two-Dimensional Diffeomorphisms with a Homoclinic Tangency of Manifolds of
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 95-102
Voir la notice du chapitre de livre
Bifurcations of periodic orbits are studied for two-dimensional diffeomorphisms close to a diffeomorphism with the quadratic homoclinic tangency to a saddle fixed point whose Jacobian is equal to one. Problems of the coexistence of periodic orbits of various types of stability are considered.
@article{TM_2002_236_a10,
author = {V. S. Gonchenko},
title = {On {Bifurcations} of {Two-Dimensional} {Diffeomorphisms} with {a~Homoclinic} {Tangency} of {Manifolds} of},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {95--102},
year = {2002},
volume = {236},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a10/}
}
TY - JOUR AU - V. S. Gonchenko TI - On Bifurcations of Two-Dimensional Diffeomorphisms with a Homoclinic Tangency of Manifolds of JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 95 EP - 102 VL - 236 UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a10/ LA - ru ID - TM_2002_236_a10 ER -
V. S. Gonchenko. On Bifurcations of Two-Dimensional Diffeomorphisms with a Homoclinic Tangency of Manifolds of. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 95-102. http://geodesic.mathdoc.fr/item/TM_2002_236_a10/
[1] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi, I, II”, Mat. sb., 88:4 (1972), 475–492 ; 90:1 (1973), 139–157 | MR | Zbl | MR
[2] Gonchenko S. V., Gonchenko V. S., On Andronov–Hopf bifurcations of two-dimensional diffeomorphisms with homoclinic tangencies, Preprint No 556, WIAS, Berlin, 2000 | MR
[3] Gonchenko S. V., Shilnikov L. P., “Invarianty $\Omega$-sopryazhennosti diffeomorfizmov s negruboi gomoklinicheskoi traektoriei”, Ukr. mat. zhurn., 42:2 (1990), 153–159 | MR | Zbl