Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 114-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

A local classification is constructed for real nonumbilic hypersurfaces of three-dimensional complex spaces that have sign-indefinite nondegenerate Levi forms and admit seven-dimensional transitive groups of local holomorphic transformations. A full (up to holomorphic equivalence) explicit description of such manifolds is presented. The basic tool used in this paper is the apparatus of local normal forms for the equations of the manifolds considered.
@article{TM_2001_235_a8,
     author = {A. V. Loboda},
     title = {Homogeneous {Real} {Hypersurfaces} in $\mathbb C^3$ with {Two-Dimensional} {Isotropy} {Groups}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {114--142},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a8/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 114
EP  - 142
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a8/
LA  - ru
ID  - TM_2001_235_a8
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 114-142
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a8/
%G ru
%F TM_2001_235_a8
A. V. Loboda. Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 114-142. http://geodesic.mathdoc.fr/item/TM_2001_235_a8/

[1] Cartan E., “Sur la géométrie pseudoconforme des hypersurfaces de deux variables complexes”, Oeuvres complètes, Pt. 2, 2, Gauthier-Villars, Paris, 1953, 1231–1304

[2] Montgomery D., Zippin L., Topological transformation groups, v. 1, Intersci. Tracts Pure and Appl. Math., Intersci. Publ., New York, London, 1955 | MR | Zbl

[3] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 | DOI | MR | Zbl

[4] Morimoto A., Nagano T., “On pseudo-conformal transformations of hypersurfaces”, J. Math. Soc. Japan, 15 (1963), 289–300 | DOI | MR | Zbl

[5] Kaup W., “Reele Transformationensgruppen und invariante Metriken auf Komplexen Raumen”, Invent. Math., 3 (1967), 43–70 | DOI | MR | Zbl

[6] Rossi H., “Homogeneous strongly pseudoconvex hypersurfaces”, Rice Univ. Stud., 59:3 (1973), 131–145 | MR | Zbl

[7] Takagi R., “On homogeneous real hypersurfaces in a complex projective space”, Osaka J. Math., 19 (1973), 495–506 | MR

[8] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR

[9] Webster S. M., “On the Moser normal form at a nonumbilic point”, Math. Ann., 233:2 (1978), 97–102 | DOI | MR | Zbl

[10] Burns D., Shneider S., Wells R. O., “Deformations of strictly pseudoconvex domains”, Invent. Math., 46:3 (1978), 237–253 | DOI | MR | Zbl

[11] Beloshapka V. K., “O razmernosti grupp avtomorfizmov analiticheskoi giperpoverkhnosti”, Izv. AN SSSR. Ser. mat., 43:2 (1979), 243–266 | MR | Zbl

[12] Beloshapka V. K., “Odnorodnye giperpoverkhnosti v $\mathbb{C}^2$”, Mat. zametki, 60:5 (1996), 760–764 | MR | Zbl

[13] Ezhov V. V., “Linearizatsiya gruppy stabilnosti odnogo klassa giperpoverkhnostei”, UMN, 41:3 (1986), 181–182 | MR | Zbl

[14] Stanton N. K., “A normal form for rigid hypersurfaces in $\mathbb{C}^2$”, Amer. J. Math., 113:5 (1991), 877–910 | DOI | MR | Zbl

[15] Stanton N. K., “Infinitesimal {CR} automorphisms of rigid hypersurfaces”, Amer. J. Math., 117:1 (1995), 141–167 | DOI | MR | Zbl

[16] Azad H., Huckleberry A., Richthofer W., “Homogeneous {CR} manifolds”, J. Reine und Angew. Math., 358 (1985), 125–154 | MR | Zbl

[17] Winkelmann J., The classification of 3-dimensional homogeneous complex manifolds, Lect. Notes Math., 1062, Springer, Berlin etc., 1995 | MR

[18] Doubrov B., Komrakov B., Rabinovich M., Homogeneous surfaces in the 3-dimensional affine geometry, Prepr. Ser. Pure Math. Inst. Math. Univ. Oslo. No 4, 1995, 1–26

[19] Zaitsev D., “Germs of local automorphisms of real-analytic {CR} structures and dependence on $k$-jets”, Math. Res. Lett., 4:6 (1997), 823–842 | MR | Zbl

[20] Eastwood M., Ezhov V. V., “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77 (1999), 11–69 | DOI | MR | Zbl

[21] Ezhov V. V., Loboda A. V., Shmalts G., “Kanonicheskaya forma mnogochlena chetvertoi stepeni v normalnom uravnenii veschestvennoi giperpoverkhnosti v $\mathbb{C}^3$”, Mat. zametki, 66:4 (1999), 624–626 | MR

[22] Loboda A. V., “O lokalnykh avtomorfizmakh veschestvenno-analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. mat., 45:3 (1981), 620–645 | MR | Zbl

[23] Loboda A. V., “O normalnykh formakh nesfericheskikh poverkhnostei”, Mater. Vsesoyuz. shk. po teorii funktsii, Kemerovo, 1983, 65; Полн. текст деп. в ВИНИТИ, No 3254-84, 1984

[24] Loboda A. V., “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb{C}^2$”, Mat. zametki, 59:2 (1996), 211–223 | MR | Zbl

[25] Loboda A. V., “O razmernosti gruppy, tranzitivno deistvuyuschei na giperpoverkhnosti v $\mathbb{C}^3$”, Funkts. analiz i ego pril., 33:1 (1999), 68–71 | MR | Zbl

[26] Loboda A. V., “Ob opredelenii affinno odnorodnoi sedlovidnoi poverkhnosti prostranstva $\mathbb{R}^3$ po koeffitsientam ee normalnogo uravneniya”, Mat. zametki, 65:5 (1999), 793–796 | MR

[27] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Voronezh. zimn. mat. shk., Tez. dokl., Voronezh, 2000, 111–112

[28] Loboda A. V., “Lokalnoe opisanie odnorodnykh veschestvennykh giperpoverkhnostei dvumernogo kompleksnogo prostranstva v terminakh ikh normalnykh uravnenii”, Funkts. analiz i ego pril., 34:2 (2000), 33–42 | MR | Zbl

[29] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s “bolshimi” gruppami izotropii”, Mezhdunar. shk.-seminar, posv. 90-letiyu N. V. Efimova, Tez. dokl. Abrau-Dyurso, 2000, 105–106 | MR