Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2001_235_a8, author = {A. V. Loboda}, title = {Homogeneous {Real} {Hypersurfaces} in $\mathbb C^3$ with {Two-Dimensional} {Isotropy} {Groups}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {114--142}, publisher = {mathdoc}, volume = {235}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a8/} }
TY - JOUR AU - A. V. Loboda TI - Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 114 EP - 142 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2001_235_a8/ LA - ru ID - TM_2001_235_a8 ER -
A. V. Loboda. Homogeneous Real Hypersurfaces in $\mathbb C^3$ with Two-Dimensional Isotropy Groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 114-142. http://geodesic.mathdoc.fr/item/TM_2001_235_a8/
[1] Cartan E., “Sur la géométrie pseudoconforme des hypersurfaces de deux variables complexes”, Oeuvres complètes, Pt. 2, 2, Gauthier-Villars, Paris, 1953, 1231–1304
[2] Montgomery D., Zippin L., Topological transformation groups, v. 1, Intersci. Tracts Pure and Appl. Math., Intersci. Publ., New York, London, 1955 | MR | Zbl
[3] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 | DOI | MR | Zbl
[4] Morimoto A., Nagano T., “On pseudo-conformal transformations of hypersurfaces”, J. Math. Soc. Japan, 15 (1963), 289–300 | DOI | MR | Zbl
[5] Kaup W., “Reele Transformationensgruppen und invariante Metriken auf Komplexen Raumen”, Invent. Math., 3 (1967), 43–70 | DOI | MR | Zbl
[6] Rossi H., “Homogeneous strongly pseudoconvex hypersurfaces”, Rice Univ. Stud., 59:3 (1973), 131–145 | MR | Zbl
[7] Takagi R., “On homogeneous real hypersurfaces in a complex projective space”, Osaka J. Math., 19 (1973), 495–506 | MR
[8] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR
[9] Webster S. M., “On the Moser normal form at a nonumbilic point”, Math. Ann., 233:2 (1978), 97–102 | DOI | MR | Zbl
[10] Burns D., Shneider S., Wells R. O., “Deformations of strictly pseudoconvex domains”, Invent. Math., 46:3 (1978), 237–253 | DOI | MR | Zbl
[11] Beloshapka V. K., “O razmernosti grupp avtomorfizmov analiticheskoi giperpoverkhnosti”, Izv. AN SSSR. Ser. mat., 43:2 (1979), 243–266 | MR | Zbl
[12] Beloshapka V. K., “Odnorodnye giperpoverkhnosti v $\mathbb{C}^2$”, Mat. zametki, 60:5 (1996), 760–764 | MR | Zbl
[13] Ezhov V. V., “Linearizatsiya gruppy stabilnosti odnogo klassa giperpoverkhnostei”, UMN, 41:3 (1986), 181–182 | MR | Zbl
[14] Stanton N. K., “A normal form for rigid hypersurfaces in $\mathbb{C}^2$”, Amer. J. Math., 113:5 (1991), 877–910 | DOI | MR | Zbl
[15] Stanton N. K., “Infinitesimal {CR} automorphisms of rigid hypersurfaces”, Amer. J. Math., 117:1 (1995), 141–167 | DOI | MR | Zbl
[16] Azad H., Huckleberry A., Richthofer W., “Homogeneous {CR} manifolds”, J. Reine und Angew. Math., 358 (1985), 125–154 | MR | Zbl
[17] Winkelmann J., The classification of 3-dimensional homogeneous complex manifolds, Lect. Notes Math., 1062, Springer, Berlin etc., 1995 | MR
[18] Doubrov B., Komrakov B., Rabinovich M., Homogeneous surfaces in the 3-dimensional affine geometry, Prepr. Ser. Pure Math. Inst. Math. Univ. Oslo. No 4, 1995, 1–26
[19] Zaitsev D., “Germs of local automorphisms of real-analytic {CR} structures and dependence on $k$-jets”, Math. Res. Lett., 4:6 (1997), 823–842 | MR | Zbl
[20] Eastwood M., Ezhov V. V., “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77 (1999), 11–69 | DOI | MR | Zbl
[21] Ezhov V. V., Loboda A. V., Shmalts G., “Kanonicheskaya forma mnogochlena chetvertoi stepeni v normalnom uravnenii veschestvennoi giperpoverkhnosti v $\mathbb{C}^3$”, Mat. zametki, 66:4 (1999), 624–626 | MR
[22] Loboda A. V., “O lokalnykh avtomorfizmakh veschestvenno-analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. mat., 45:3 (1981), 620–645 | MR | Zbl
[23] Loboda A. V., “O normalnykh formakh nesfericheskikh poverkhnostei”, Mater. Vsesoyuz. shk. po teorii funktsii, Kemerovo, 1983, 65; Полн. текст деп. в ВИНИТИ, No 3254-84, 1984
[24] Loboda A. V., “O nekotorykh invariantakh trubchatykh giperpoverkhnostei v $\mathbb{C}^2$”, Mat. zametki, 59:2 (1996), 211–223 | MR | Zbl
[25] Loboda A. V., “O razmernosti gruppy, tranzitivno deistvuyuschei na giperpoverkhnosti v $\mathbb{C}^3$”, Funkts. analiz i ego pril., 33:1 (1999), 68–71 | MR | Zbl
[26] Loboda A. V., “Ob opredelenii affinno odnorodnoi sedlovidnoi poverkhnosti prostranstva $\mathbb{R}^3$ po koeffitsientam ee normalnogo uravneniya”, Mat. zametki, 65:5 (1999), 793–796 | MR
[27] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Voronezh. zimn. mat. shk., Tez. dokl., Voronezh, 2000, 111–112
[28] Loboda A. V., “Lokalnoe opisanie odnorodnykh veschestvennykh giperpoverkhnostei dvumernogo kompleksnogo prostranstva v terminakh ikh normalnykh uravnenii”, Funkts. analiz i ego pril., 34:2 (2000), 33–42 | MR | Zbl
[29] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s “bolshimi” gruppami izotropii”, Mezhdunar. shk.-seminar, posv. 90-letiyu N. V. Efimova, Tez. dokl. Abrau-Dyurso, 2000, 105–106 | MR