Characterization of $\mathbb C^n$ by Its Automorphism Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 110-113
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that if the group of holomorphic automorphisms of a connected Stein manifold $M$ is isomorphic to that of $\mathbb C^n$ as a topological group equipped with the compact-open topology, then $M$ is biholomorphically equivalent to $\mathbb C^n$.
@article{TM_2001_235_a7,
author = {A. V. Isaev},
title = {Characterization of $\mathbb C^n$ by {Its} {Automorphism} {Group}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {110--113},
year = {2001},
volume = {235},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a7/}
}
A. V. Isaev. Characterization of $\mathbb C^n$ by Its Automorphism Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 110-113. http://geodesic.mathdoc.fr/item/TM_2001_235_a7/
[1] Andersen E., Lempert L., “On the group of holomorphic automorphisms of $\mathbb{C}^n$”, Invent. Math., 110 (1992), 371–388 | DOI | MR | Zbl
[2] Barrett D., Bedford E., Dadok J., “$\mathbb{T}^n$-actions on holomorphically separable complex manifolds”, Math. Ztschr., 202 (1989), 65–82 | DOI | MR | Zbl
[3] Bochner S., Montgomery D., “Groups of differentiable and real or complex analytic transformations”, Ann. Math., 46 (1945), 685–694 | DOI | MR | Zbl
[4] Isaev A. V., Kruzhilin N. G., Effective actions of the unitary group on complex manifolds, Preprint CMA, ANU No. MRR 00-024, Canberra, 2000 | MR
[5] Warner F. W., Foundations of differentiable manifolds and Lie groups, Scott, Foresman Co., Glenview, Ill., London, 1971 | MR | Zbl