Characterization of $\mathbb C^n$ by Its Automorphism Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 110-113

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if the group of holomorphic automorphisms of a connected Stein manifold $M$ is isomorphic to that of $\mathbb C^n$ as a topological group equipped with the compact-open topology, then $M$ is biholomorphically equivalent to $\mathbb C^n$.
@article{TM_2001_235_a7,
     author = {A. V. Isaev},
     title = {Characterization of $\mathbb C^n$ by {Its} {Automorphism} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {110--113},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a7/}
}
TY  - JOUR
AU  - A. V. Isaev
TI  - Characterization of $\mathbb C^n$ by Its Automorphism Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 110
EP  - 113
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a7/
LA  - en
ID  - TM_2001_235_a7
ER  - 
%0 Journal Article
%A A. V. Isaev
%T Characterization of $\mathbb C^n$ by Its Automorphism Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 110-113
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a7/
%G en
%F TM_2001_235_a7
A. V. Isaev. Characterization of $\mathbb C^n$ by Its Automorphism Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 110-113. http://geodesic.mathdoc.fr/item/TM_2001_235_a7/