Three Remarks on the Inversion Problem for Polynomial Maps
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 94-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

An example of covering a sphere by a projective plane arisen in relation to the so-called Jacobian problem is described. In the same relation, conformal types of complex curves are touched upon. The preservation of the type by multidimensional holomorphic maps is pointed out.
@article{TM_2001_235_a5,
     author = {V. A. Zorich},
     title = {Three {Remarks} on the {Inversion} {Problem} for {Polynomial} {Maps}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {94--97},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a5/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Three Remarks on the Inversion Problem for Polynomial Maps
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 94
EP  - 97
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a5/
LA  - ru
ID  - TM_2001_235_a5
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Three Remarks on the Inversion Problem for Polynomial Maps
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 94-97
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a5/
%G ru
%F TM_2001_235_a5
V. A. Zorich. Three Remarks on the Inversion Problem for Polynomial Maps. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 94-97. http://geodesic.mathdoc.fr/item/TM_2001_235_a5/

[1] Dell'Achchio F., “Kontrprimer k odnoi gipoteze, svyazannoi s problemoi o yakobiane”, Mat. zametki, 58:3 (1995), 452–455 | MR

[2] Dell'Achchio F., “O nepreryvnom prodolzhenii lokalno gomeomorfnykh simplitsialnykh otobrazhenii $\mathbb{R}^2$ v sebya posredstvom $\sigma$-protsessov”, Mat. zametki, 59:6 (1996), 821–831 | MR

[3] Zorich V. A., “Teorema M. A. Lavrenteva o kvazikonformnykh otobrazheniyakh prostranstva”, Mat. sb., 74 (1967), 417–433 | Zbl

[4] Lavrentev M. A., “Ob odnom differentsialnom priznake gomeomorfnykh otobrazhenii trekhmernykh oblastei”, DAN SSSR, 20 (1938), 241–242

[5] Pinchuk S., “A counterexample to the strong real Jacobian conjecture”, Math. Ztschr., 217:1 (1994), 1–4 | DOI | MR | Zbl

[6] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., “Osobennosti. I: Lokalnaya i globalnaya teoriya”, Dinamicheskie sistemy – 6, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, VINITI, M., 1988, 5–250 | MR

[7] Shafarevich I. R., Osnovy algebraicheskoi geometrii, T. 1, Nauka, M., 1988 | MR

[8] Zorich V. A., “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Lect. Notes Math., 1508, 1992, 131–148 | MR

[9] Varopoulos N. Th., Saloff-Coste L., Coulhon T., Analysis and geometry on groups, Cambridge Tracts Math., 100, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[10] Zorich V. A., “Asymptotic geometry and conformal types of Carnot–Carathéodory spaces”, Geom. and Funct. Anal., 9:2 (1999), 393–411 | DOI | MR | Zbl

[11] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[12] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, Appendices by M. Katz, P. Pansu, S. Semmes, Birkhäuser, Boston etc., 1999 | MR | Zbl

[13] Zorich V. A., “Kvazikonformnye pogruzheniya rimanovykh mnogoobrazii i teorema pikarovskogo tipa”, Funkts. analiz i ego pril., 34:3 (2000), 37–48 | MR | Zbl