Homogeneous Hypersurfaces with Isotropy in Affine Four-Space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 57-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify the non-degenerate homogeneous hypersurfaces in real and complex affine four-space whose symmetry group is at least four-dimensional.
@article{TM_2001_235_a3,
     author = {M. G. Eastwood and V. V. Ezhov},
     title = {Homogeneous {Hypersurfaces} with {Isotropy} in {Affine} {Four-Space}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {57--70},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a3/}
}
TY  - JOUR
AU  - M. G. Eastwood
AU  - V. V. Ezhov
TI  - Homogeneous Hypersurfaces with Isotropy in Affine Four-Space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 57
EP  - 70
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a3/
LA  - en
ID  - TM_2001_235_a3
ER  - 
%0 Journal Article
%A M. G. Eastwood
%A V. V. Ezhov
%T Homogeneous Hypersurfaces with Isotropy in Affine Four-Space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 57-70
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a3/
%G en
%F TM_2001_235_a3
M. G. Eastwood; V. V. Ezhov. Homogeneous Hypersurfaces with Isotropy in Affine Four-Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 57-70. http://geodesic.mathdoc.fr/item/TM_2001_235_a3/

[1] Doubrov B., Komrakov B., Rabinovich M., “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry and topology of submanifolds, VIII, eds. F. Dillen et al., World Sci., River Edge, NJ, 1996, 168–178 | MR | Zbl

[2] Eastwood M. G., Ezhov V. V., “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. dedicata, 77 (1999), 11–69 | DOI | MR | Zbl

[3] Leichtweiß K., “Über eine geometrische Deutung des Affinnormalenvektors einseitig gekrümmter Hyperflächen”, Arch. Math., 53 (1989), 613–621 | DOI | MR | Zbl

[4] Loboda A. V., “Ob opredelenii affinno odnorodnoi sedlovidnoi poverkhnosti prostranstva $\mathbb{R}^3$ po koeffitsientam ee normalnogo uravneniya”, Mat. zametki, 65:5 (1999), 793–796 | MR

[5] Penrose R., Rindler W., Spinors and space–time, V. 1, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[6] Nomizu K., Sasaki T., Affine differential geometry, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl