Homogeneous Hypersurfaces with Isotropy in Affine Four-Space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 57-70
Voir la notice de l'article provenant de la source Math-Net.Ru
We classify the non-degenerate homogeneous hypersurfaces in real and complex affine four-space whose symmetry group is at least four-dimensional.
@article{TM_2001_235_a3,
author = {M. G. Eastwood and V. V. Ezhov},
title = {Homogeneous {Hypersurfaces} with {Isotropy} in {Affine} {Four-Space}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {57--70},
publisher = {mathdoc},
volume = {235},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a3/}
}
TY - JOUR AU - M. G. Eastwood AU - V. V. Ezhov TI - Homogeneous Hypersurfaces with Isotropy in Affine Four-Space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 57 EP - 70 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2001_235_a3/ LA - en ID - TM_2001_235_a3 ER -
M. G. Eastwood; V. V. Ezhov. Homogeneous Hypersurfaces with Isotropy in Affine Four-Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 57-70. http://geodesic.mathdoc.fr/item/TM_2001_235_a3/