Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2001_235_a3, author = {M. G. Eastwood and V. V. Ezhov}, title = {Homogeneous {Hypersurfaces} with {Isotropy} in {Affine} {Four-Space}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {57--70}, publisher = {mathdoc}, volume = {235}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a3/} }
TY - JOUR AU - M. G. Eastwood AU - V. V. Ezhov TI - Homogeneous Hypersurfaces with Isotropy in Affine Four-Space JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 57 EP - 70 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2001_235_a3/ LA - en ID - TM_2001_235_a3 ER -
M. G. Eastwood; V. V. Ezhov. Homogeneous Hypersurfaces with Isotropy in Affine Four-Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 57-70. http://geodesic.mathdoc.fr/item/TM_2001_235_a3/
[1] Doubrov B., Komrakov B., Rabinovich M., “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry and topology of submanifolds, VIII, eds. F. Dillen et al., World Sci., River Edge, NJ, 1996, 168–178 | MR | Zbl
[2] Eastwood M. G., Ezhov V. V., “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. dedicata, 77 (1999), 11–69 | DOI | MR | Zbl
[3] Leichtweiß K., “Über eine geometrische Deutung des Affinnormalenvektors einseitig gekrümmter Hyperflächen”, Arch. Math., 53 (1989), 613–621 | DOI | MR | Zbl
[4] Loboda A. V., “Ob opredelenii affinno odnorodnoi sedlovidnoi poverkhnosti prostranstva $\mathbb{R}^3$ po koeffitsientam ee normalnogo uravneniya”, Mat. zametki, 65:5 (1999), 793–796 | MR
[5] Penrose R., Rindler W., Spinors and space–time, V. 1, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[6] Nomizu K., Sasaki T., Affine differential geometry, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl