Topology of Hypersurface Complements in $\mathbb C^n$ and Rationally Convex Hulls
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 169-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns the topology of real $n$-dimensional submanifolds in the complement of a complex hypersurface in $\mathbb C^n$, $n\ge 2$. The results are applied to the study of topological obstructions to rational approximation.
@article{TM_2001_235_a12,
     author = {S. Yu. Nemirovski},
     title = {Topology of {Hypersurface} {Complements} in $\mathbb C^n$ and {Rationally} {Convex} {Hulls}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a12/}
}
TY  - JOUR
AU  - S. Yu. Nemirovski
TI  - Topology of Hypersurface Complements in $\mathbb C^n$ and Rationally Convex Hulls
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 169
EP  - 180
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a12/
LA  - ru
ID  - TM_2001_235_a12
ER  - 
%0 Journal Article
%A S. Yu. Nemirovski
%T Topology of Hypersurface Complements in $\mathbb C^n$ and Rationally Convex Hulls
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 169-180
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a12/
%G ru
%F TM_2001_235_a12
S. Yu. Nemirovski. Topology of Hypersurface Complements in $\mathbb C^n$ and Rationally Convex Hulls. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 169-180. http://geodesic.mathdoc.fr/item/TM_2001_235_a12/

[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR

[2] Buruchenko N. A., Tsikh A. K., “O gomologicheskom privedenii tsiklov v dopolnenii k algebraicheskoi giperpoverkhnosti”, Mat. sb., 186:10 (1995), 31–40. | MR | Zbl

[3] Duval J., “Convexité rationnelle des surfaces lagrangiennes”, Invent. Math., 104 (1991), 581–599 | DOI | MR | Zbl

[4] Lees J. A., “The surgery obstruction groups of C. T. C. Wall”, Adv. Math., 11 (1973), 113–156 | DOI | MR | Zbl

[5] Nemirovskii S. Yu., “Kompleksnyi analiz i differentsialnaya topologiya na kompleksnykh poverkhnostyakh”, UMN, 54:4 (1999), 47–74 | MR | Zbl

[6] Fam F., “Obobschennye formuly Pikara–Lefshetsa i vetvlenie integralov”, Matematika, 13:4 (1969), 61–93

[7] de Ram Zh., Differentsiruemye mnogoobraziya, Izd-vo inostr. lit., M., 1956

[8] Stolzenberg G., “Polynomially and rationally convex sets”, Acta Math., 109 (1963), 259–289 | DOI | MR | Zbl