Topology of Hypersurface Complements in $\mathbb C^n$ and Rationally Convex Hulls
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 169-180
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper concerns the topology of real $n$-dimensional submanifolds in the complement of a complex hypersurface in $\mathbb C^n$, $n\ge 2$. The results are applied to the study of topological obstructions to rational approximation.
@article{TM_2001_235_a12,
author = {S. Yu. Nemirovski},
title = {Topology of {Hypersurface} {Complements} in $\mathbb C^n$ and {Rationally} {Convex} {Hulls}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {169--180},
publisher = {mathdoc},
volume = {235},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a12/}
}
TY - JOUR AU - S. Yu. Nemirovski TI - Topology of Hypersurface Complements in $\mathbb C^n$ and Rationally Convex Hulls JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 169 EP - 180 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2001_235_a12/ LA - ru ID - TM_2001_235_a12 ER -
S. Yu. Nemirovski. Topology of Hypersurface Complements in $\mathbb C^n$ and Rationally Convex Hulls. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 169-180. http://geodesic.mathdoc.fr/item/TM_2001_235_a12/